Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems
Abstrak
Federated learning enables clients to train a machine learning model jointly without sharing their local data. However, due to the centrality of federated learning framework and the untrustworthiness of clients, traditional federated learning solutions are vulnerable to poisoning attacks from malicious clients and servers. In this paper, we aim to mitigate the impact of the central server and malicious clients by designing a Privacy-preserving Byzantine-robust Federated Learning (PBFL) scheme based on blockchain. Specifically, we use cosine similarity to judge the malicious gradients uploaded by malicious clients. Then, we adopt fully homomorphic encryption to provide secure aggregation. Finally, we use blockchain system to facilitate transparent processes and implementation of regulations. Our formal analysis proves that our scheme achieves convergence and provides privacy protection. Our extensive experiments on different datasets demonstrate that our scheme is robust and efficient. Even if the root dataset is small, our scheme can achieve the same efficiency as FedSGD.
Artikel Ilmiah Terkait
Xiaolan Liu S. Lambotharan Charuka Herath + 2 lainnya
8 Juni 2023
The federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm. While FL ensures that a user's data always remain with the user, the gradients are shared with the centralized server to build the global model. This results in privacy leakage, where the server can infer private information from the shared gradients. To mitigate this flaw, the next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server. However, this approach creates other challenges, such as malicious users sharing false gradients. Since the gradients are encrypted, the server is unable to identify rogue users. To mitigate both attacks, this paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme. We develop a distributed multi-key additive homomorphic encryption scheme that supports model aggregation in FL. We also develop a novel aggregation scheme within the encrypted domain, utilizing users' non-poisoning rates, to effectively address data poisoning attacks while ensuring privacy is preserved by the proposed encryption scheme. Rigorous security, privacy, convergence, and experimental analyses have been provided to show that FheFL is novel, secure, and private, and achieves comparable accuracy at reasonable computational cost.
Meng Li Xuehui Zhao Ieee F. Richard Yu Fellow + 3 lainnya
15 Juni 2024
Federated learning, leveraging distributed data from multiple nodes to train a common model, allows for the use of more data to improve the model while also protecting the privacy of original data. However, challenges still exist in ensuring privacy and security within the interactions. To address these issues, this article proposes a federated learning approach that incorporates blockchain, homomorphic encryption, and reputation. Using homomorphic encryption, edge nodes possessing local data can complete the training of ciphertext models, with their contributions to the aggregation being evaluated by a reputation mechanism. Both models and reputations are documented and verified on the blockchain through the consensus process, which then determines the rewards based on the incentive mechanism. This approach not only incentivizes participation in training, but also ensures the privacy of data and models through encryption. Additionally, it addresses security risks associated with both data and network attacks, ultimately leading to a highly accurate trained model. To enhance the efficiency of learning and the performance of the model, a joint adaptive aggregation and resource optimization algorithm is introduced. Finally, simulations and analyses demonstrate that the proposed scheme enhances learning accuracy while maintaining privacy and security.
Dezhi Han Kuan Ching Li Arcangelo Castiglione + 5 lainnya
20 November 2021
Federated learning (FL) is a promising decentralized deep learning technology, which allows users to update models cooperatively without sharing their data. FL is reshaping existing industry paradigms for mathematical modeling and analysis, enabling an increasing number of industries to build privacy-preserving, secure distributed machine learning models. However, the inherent characteristics of FL have led to problems such as privacy protection, communication cost, systems heterogeneity, and unreliability model upload in actual operation. Interestingly, the integration with Blockchain technology provides an opportunity to further improve the FL security and performance, besides increasing its scope of applications. Therefore, we denote this integration of Blockchain and FL as the Blockchain-based federated learning (BCFL) framework. This paper introduces an in-depth survey of BCFL and discusses the insights of such a new paradigm. In particular, we first briefly introduce the FL technology and discuss the challenges faced by such technology. Then, we summarize the Blockchain ecosystem. Next, we highlight the structural design and platform of BCFL. Furthermore, we present the attempts ins improving FL performance with Blockchain and several combined applications of incentive mechanisms in FL. Finally, we summarize the industrial application scenarios of BCFL.
S. Bouzefrane S. Banerjee Thinh Le Vinh + 1 lainnya
13 September 2023
The trend of the next generation of the internet has already been scrutinized by top analytics enterprises. According to Gartner investigations, it is predicted that, by 2024, 75% of the global population will have their personal data covered under privacy regulations. This alarming statistic necessitates the orchestration of several security components to address the enormous challenges posed by federated and distributed learning environments. Federated learning (FL) is a promising technique that allows multiple parties to collaboratively train a model without sharing their data. However, even though FL is seen as a privacy-preserving distributed machine learning method, recent works have demonstrated that FL is vulnerable to some privacy attacks. Homomorphic encryption (HE) and differential privacy (DP) are two promising techniques that can be used to address these privacy concerns. HE allows secure computations on encrypted data, while DP provides strong privacy guarantees by adding noise to the data. This paper first presents consistent attacks on privacy in federated learning and then provides an overview of HE and DP techniques for secure federated learning in next-generation internet applications. It discusses the strengths and weaknesses of these techniques in different settings as described in the literature, with a particular focus on the trade-off between privacy and convergence, as well as the computation overheads involved. The objective of this paper is to analyze the challenges associated with each technique and identify potential opportunities and solutions for designing a more robust, privacy-preserving federated learning framework.
Wu Yang Dapeng Man Shichang Xuan + 3 lainnya
1 Juli 2021
The rapid development in network technology has resulted in the proliferation of Internet of Things (IoT). This trend has led to a widespread utilization of decentralized data and distributed computing power. While machine learning can benefit from the massive amount of IoT data, privacy concerns and communication costs have caused data silos. Although the adoption of blockchain and federated learning technologies addresses the security issues related to collusion attacks and privacy leakage in data sharing, the “free-rider attacks” and “model poisoning attacks” in the federated learning process require auditing of the training models one by one. However, that increases the communication cost of the entire training process. Hence, to address the problem of increased communication cost due to node security verification in the blockchain-based federated learning process, we propose a communication cost optimization method based on security evaluation. By studying the verification mechanism for useless or malicious nodes, we also introduce a double-layer aggregation model into the federated learning process by combining the competing voting verification methods and aggregation algorithms. The experimental comparisons verify that the proposed model effectively reduces the communication cost of the node security verification in the blockchain-based federated learning process.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.