DOI: 10.1007/s43926-020-00001-4
Terbit pada 24 Februari 2021 Pada Discover Internet of Things

Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity

Corinne Fair M. Kuzlu Ozgur Guler

Abstrak

In recent years, the use of the Internet of Things (IoT) has increased exponentially, and cybersecurity concerns have increased along with it. On the cutting edge of cybersecurity is Artificial Intelligence (AI), which is used for the development of complex algorithms to protect networks and systems, including IoT systems. However, cyber-attackers have figured out how to exploit AI and have even begun to use adversarial AI in order to carry out cybersecurity attacks. This review paper compiles information from several other surveys and research papers regarding IoT, AI, and attacks with and against AI and explores the relationship between these three topics with the purpose of comprehensively presenting and summarizing relevant literature in these fields.

Artikel Ilmiah Terkait

Review of security issues in Internet of Things and artificial intelligence‐driven solutions

Ali K. Abed Angesh Anupam

9 November 2022

Internet of Things (IoT) is a network of several hardware and software systems which is broadly based upon internet services and several state‐of‐the‐art sensing and communication technologies. The emergence of 5G technology will witness a further surge in the growth of IoT across the world but simultaneously security concerns pertinent to the IoT technology also need rigorous evaluations. This article will present a thorough survey of the security challenges in an IoT network, recent cases of attacks on IoT technology, communication protocols prevalent in IoT systems and the role of artificial intelligence (AI) in IoT security. For the first time, all the major attributes related to IoT security along with potential solutions using AI are reviewed and articulated together. This work would act as a useful resource for understanding useful perspectives in future research focused around the development of more secured IoT communication protocols as well as AI tools for handling privacy and security in IoT.

Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions

Asif Irshad Khan Iqbal H. Sarker Yoosef B. Abushark + 1 lainnya

14 Maret 2022

The Internet of Things (IoT) is one of the most widely used technologies today, and it has a significant effect on our lives in a variety of ways, including social, commercial, and economic aspects. In terms of automation, productivity, and comfort for consumers across a wide range of application areas, from education to smart cities, the present and future IoT technologies hold great promise for improving the overall quality of human life. However, cyber-attacks and threats greatly affect smart applications in the environment of IoT. The traditional IoT security techniques are insufficient with the recent security challenges considering the advanced booming of different kinds of attacks and threats. Utilizing artificial intelligence (AI) expertise, especially machine and deep learning solutions , is the key to delivering a dynamically enhanced and up-to-date security system for the next-generation IoT system. Throughout this article, we present a comprehensive picture on IoT security intelligence , which is built on machine and deep learning technologies that extract insights from raw data to intelligently protect IoT devices against a variety of cyber-attacks. Finally, based on our study, we highlight the associated research issues and future directions within the scope of our study. Overall, this article aspires to serve as a reference point and guide, particularly from a technical standpoint, for cybersecurity experts and researchers working in the context of IoT.

Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence

K. Ouahada Inam Ullah Tamara Al Shloul + 5 lainnya

1 April 2023

The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications. Many traditional techniques for protecting the IoT are now ineffective due to new dangers and vulnerabilities. To keep their security procedures, IoT systems of the future will need AI-efficient machine learning and deep learning. The capabilities of artificial intelligence, particularly machine and deep learning solutions, must be used if the next-generation IoT system is to have a continuously changing and up-to-date security system. IoT security intelligence is examined in this paper from every angle available. An innovative method for protecting IoT devices against a variety of cyberattacks is to use machine learning and deep learning to gain information from raw data. Finally, we discuss relevant research issues and potential next steps considering our findings. This article examines how machine learning and deep learning can be used to detect attack patterns in unstructured data and safeguard IoT devices. We discuss the challenges that researchers face, as well as potential future directions for this research area, considering these findings. Anyone with an interest in the IoT or cybersecurity can use this website’s content as a technical resource and reference.

A Survey on Industrial Internet of Things Security: Requirements, Attacks, AI-Based Solutions, and Edge Computing Opportunities

Bandar Alotaibi

28 Agustus 2023

The Industrial Internet of Things (IIoT) paradigm is a key research area derived from the Internet of Things (IoT). The emergence of IIoT has enabled a revolution in manufacturing and production, through the employment of various embedded sensing devices connected by an IoT network, along with a collection of enabling technologies, such as artificial intelligence (AI) and edge/fog computing. One of the unrivaled characteristics of IIoT is the inter-connectivity provided to industries; however, this characteristic might open the door for cyber-criminals to launch various attacks. In fact, one of the major challenges hindering the prevalent adoption of the IIoT paradigm is IoT security. Inevitably, there has been an inevitable increase in research proposals over the last decade to overcome these security concerns. To obtain an overview of this research area, conducting a literature survey of the published research is necessary, eliciting the various security requirements and their considerations. This paper provides a literature survey of IIoT security, focused on the period from 2017 to 2023. We identify IIoT security threats and classify them into three categories, based on the IIoT layer they exploit to launch these attacks. Additionally, we characterize the security requirements that these attacks violate. Finally, we highlight how emerging technologies, such as AI and edge/fog computing, can be adopted to address security concerns and enhance IIoT security.

Using machine learning algorithms to enhance IoT system security

Hosam F. El-Sofany Omar H. Karam S. A. El-Seoud + 1 lainnya

27 Mei 2024

The term “Internet of Things” (IoT) refers to a system of networked computing devices that may work and communicate with one another without direct human intervention. It is one of the most exciting areas of computing nowadays, with its applications in multiple sectors like cities, homes, wearable equipment, critical infrastructure, hospitals, and transportation. The security issues surrounding IoT devices increase as they expand. To address these issues, this study presents a novel model for enhancing the security of IoT systems using machine learning (ML) classifiers. The proposed approach analyzes recent technologies, security, intelligent solutions, and vulnerabilities in ML IoT-based intelligent systems as an essential technology to improve IoT security. The study illustrates the benefits and limitations of applying ML in an IoT environment and provides a security model based on ML that manages autonomously the rising number of security issues related to the IoT domain. The paper proposes an ML-based security model that autonomously handles the growing number of security issues associated with the IoT domain. This research made a significant contribution by developing a cyberattack detection solution for IoT devices using ML. The study used seven ML algorithms to identify the most accurate classifiers for their AI-based reaction agent’s implementation phase, which can identify attack activities and patterns in networks connected to the IoT. The study used seven ML algorithms to identify the most accurate classifiers for their AI-based reaction agent’s implementation phase, which can identify attack activities and patterns in networks connected to the IoT. Compared to previous research, the proposed approach achieved a 99.9% accuracy, a 99.8% detection average, a 99.9 F1 score, and a perfect AUC score of 1. The study highlights that the proposed approach outperforms earlier machine learning-based models in terms of both execution speed and accuracy. The study illustrates that the suggested approach outperforms previous machine learning-based models in both execution time and accuracy.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.