Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches
Abstrak
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Artikel Ilmiah Terkait
Sheifali Gupta Wegayehu Enbeyle Deepika Koundal + 2 lainnya
10 Maret 2022
Image segmentation is a branch of digital image processing which has numerous applications in the field of analysis of images, augmented reality, machine vision, and many more. The field of medical image analysis is growing and the segmentation of the organs, diseases, or abnormalities in medical images has become demanding. The segmentation of medical images helps in checking the growth of disease like tumour, controlling the dosage of medicine, and dosage of exposure to radiations. Medical image segmentation is really a challenging task due to the various artefacts present in the images. Recently, deep neural models have shown application in various image segmentation tasks. This significant growth is due to the achievements and high performance of the deep learning strategies. This work presents a review of the literature in the field of medical image segmentation employing deep convolutional neural networks. The paper examines the various widely used medical image datasets, the different metrics used for evaluating the segmentation tasks, and performances of different CNN based networks. In comparison to the existing review and survey papers, the present work also discusses the various challenges in the field of segmentation of medical images and different state-of-the-art solutions available in the literature.
Mohd Anwar Abeer Aljuaid
17 Mei 2022
Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physicians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual medical image analysis is tedious and time consuming, making it necessary to identify accurate automated methods. Deep learning—especially supervised deep learning—shows impressive performance in the classification, detection, and segmentation of medical images and has proven comparable in ability to humans. This survey aims to help researchers and practitioners of medical image analysis understand the key concepts and algorithms of supervised learning techniques. Specifically, this survey explains the performance metrics of supervised learning methods; summarizes the available medical datasets; studies the state-of-the-art supervised learning architectures for medical imaging processing, including convolutional neural networks (CNNs) and their corresponding algorithms, region-based CNNs and their variants, fully convolutional networks (FCN) and U-Net architecture; and discusses the trends and challenges in the application of supervised learning methods to medical image analysis. Supervised learning requires large labeled datasets to learn and achieve good performance, and data augmentation, transfer learning, and dropout techniques have widely been employed in medical image processing to overcome the lack of such datasets.
R. Ogundokun Serestina Viriri A. Adegun
7 Mei 2021
Localization of region of interest (ROI) is paramount to the analysis of medical images to assist in the identification and detection of diseases. In this research, we explore the application of a deep learning approach in the analysis of some medical images. Traditional methods have been restricted due to the coarse and granulated appearance of most of these images. Recently, deep learning techniques have produced promising results in the segmentation of medical images for the diagnosis of diseases. This research experiments on medical images using a robust deep learning architecture based on the Fully Convolutional Network- (FCN-) UNET method for the segmentation of three samples of medical images such as skin lesion, retinal images, and brain Magnetic Resonance Imaging (MRI) images. The proposed method can efficiently identify the ROI on these images to assist in the diagnosis of diseases such as skin cancer, eye defects and diabetes, and brain tumor. This system was evaluated on publicly available databases such as the International Symposium on Biomedical Imaging (ISBI) skin lesion images, retina images, and brain tumor datasets with over 90% accuracy and dice coefficient.
Nico Bay Ricardo Buettner Toni Zubac + 1 lainnya
1 Juli 2020
We review literature in top journals and conferences on the usage of deep learning for medical image analysis in modern healthcare. As a result it is shown that deep learning offers unique capabilities and breakthroughs in identifying, classifying and segmenting different kinds of medical images, especially related to cancer in the breast, lung, and brain.
Habib Rasi Parisa Nayeri Bagher Sistaninejhad
29 Mei 2023
Medical imaging refers to the process of obtaining images of internal organs for therapeutic purposes such as discovering or studying diseases. The primary objective of medical image analysis is to improve the efficacy of clinical research and treatment options. Deep learning has revamped medical image analysis, yielding excellent results in image processing tasks such as registration, segmentation, feature extraction, and classification. The prime motivations for this are the availability of computational resources and the resurgence of deep convolutional neural networks. Deep learning techniques are good at observing hidden patterns in images and supporting clinicians in achieving diagnostic perfection. It has proven to be the most effective method for organ segmentation, cancer detection, disease categorization, and computer-assisted diagnosis. Many deep learning approaches have been published to analyze medical images for various diagnostic purposes. In this paper, we review the work exploiting current state-of-the-art deep learning approaches in medical image processing. We begin the survey by providing a synopsis of research works in medical imaging based on convolutional neural networks. Second, we discuss popular pretrained models and general adversarial networks that aid in improving convolutional networks' performance. Finally, to ease direct evaluation, we compile the performance metrics of deep learning models focusing on COVID-19 detection and child bone age prediction.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.