Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction
Abstrak
Recent advances in deep learning, especially the long short-term memory (LSTM) networks, provide some useful insights on how to tackle time series prediction problems, not to mention the development of a time series model itself for prediction. Runoff forecasting is a time series prediction problem with a series of past runoff data (water level and discharge series data) as inputs and a fixed-length series of future runoff as output. Most previous work paid attention to the sufficiency of input data and the structural complexity of deep learning, while less effort has been put into the consideration of data quantity or the processing of original input data—such as time series decomposition, which can better capture the trend of runoff—or unleashing the effective potential of deep learning. Mutual information and seasonal trend decomposition are two useful time series methods in handling data quantity analysis and original data processing. Based on a former study, we proposed a deep learning model combined with time series analysis methods for daily runoff prediction in the middle Yangtze River and analyzed its feasibility and usability with frequently used counterpart models. Furthermore, this research also explored the data quality that affect the performance of the deep learning model. With the application of the time series method, we can effectively get some information about the data quality and data amount that we adopted in the deep learning model. The comparison experiment resulted in two different sites, implying that the proposed model improved the precision of runoff prediction and is much easier and more effective for practical application. In short, time series analysis methods can exert great potential of deep learning in daily runoff prediction and may unleash great potential of artificial intelligence in hydrology research.
Artikel Ilmiah Terkait
Bryan Lim Stefan Zohren
28 April 2020
Numerous deep learning architectures have been developed to accommodate the diversity of time-series datasets across different domains. In this article, we survey common encoder and decoder designs used in both one-step-ahead and multi-horizon time-series forecasting—describing how temporal information is incorporated into predictions by each model. Next, we highlight recent developments in hybrid deep learning models, which combine well-studied statistical models with neural network components to improve pure methods in either category. Lastly, we outline some ways in which deep learning can also facilitate decision support with time-series data. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.
Ka Lun Eddie Law Wenxiang Li
2024
Time series forecasting involves justifying assertions scientifically regarding potential states or predicting future trends of an event based on historical data recorded at various time intervals. The field of time series forecasting, supported by diverse deep learning models, has made significant advancements, rendering it a prominent research area. The broad spectra of available time series datasets serve as valuable resources for conducting extensive studies in time series analysis with varied objectives. However, the complexity and scale of time series data present challenges in constructing reliable prediction models. In this paper, our objectives are to introduce and review methodologies for modeling time series data, outline the commonly used time series forecasting datasets and different evaluation metrics. We delve into the essential architectures for trending an input dataset and offer a comprehensive assessment of the recently developed deep learning prediction models. In general, different models likely serve different design goals. We boldly examine the performance of these models under the same time series input dataset with an identical hardware computing system. The measured performance may reflect the design flexibility among all the ranked models. And through our experiments, the SCINet model performs the best in accuracy with the ETT energy input dataset. The results we obtain could give a glimpse in understanding the model design and performance relationship. Upon concluding the paper, we shall provide further discussion on future deep learning research directions in the realm of time series forecasting.
Mingfang Huang Jianhu Zheng
2020
Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long short-term memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management.
Murat Fahrioglu M. Kuşaf Cem Direkoglu + 1 lainnya
22 Februari 2024
Forecasting solar power production accurately is critical for effectively planning and managing renewable energy systems. This paper introduces and investigates novel hybrid deep learning models for solar power forecasting using time series data. The research analyzes the efficacy of various models for capturing the complex patterns present in solar power data. In this study, all of the possible combinations of convolutional neural network (CNN), long short-term memory (LSTM), and transformer (TF) models are experimented. These hybrid models also compared with the single CNN, LSTM and TF models with respect to different kinds of optimizers. Three different evaluation metrics are also employed for performance analysis. Results show that the CNN–LSTM–TF hybrid model outperforms the other models, with a mean absolute error (MAE) of 0.551% when using the Nadam optimizer. However, the TF–LSTM model has relatively low performance, with an MAE of 16.17%, highlighting the difficulties in making reliable predictions of solar power. This result provides valuable insights for optimizing and planning renewable energy systems, highlighting the significance of selecting appropriate models and optimizers for accurate solar power forecasting. This is the first time such a comprehensive work presented that also involves transformer networks in hybrid models for solar power forecasting.
Yong Liu Haixu Wu Jiaxiang Dong + 3 lainnya
18 Juli 2024
Time series, characterized by a sequence of data points arranged in a discrete-time order, are ubiquitous in real-world applications. Different from other modalities, time series present unique challenges due to their complex and dynamic nature, including the entanglement of nonlinear patterns and time-variant trends. Analyzing time series data is of great significance in real-world scenarios and has been widely studied over centuries. Recent years have witnessed remarkable breakthroughs in the time series community, with techniques shifting from traditional statistical methods to advanced deep learning models. In this paper, we delve into the design of deep time series models across various analysis tasks and review the existing literature from two perspectives: basic modules and model architectures. Further, we develop and release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks, which implements 24 mainstream models, covers 30 datasets from different domains, and supports five prevalent analysis tasks. Based on TSLib, we thoroughly evaluate 12 advanced deep time series models on different tasks. Empirical results indicate that models with specific structures are well-suited for distinct analytical tasks, which offers insights for research and adoption of deep time series models. Code is available at https://github.com/thuml/Time-Series-Library.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.