DOI: 10.1177/20539517231171051
Terbit pada 1 Januari 2023 Pada Big Data & Society

Big ideas, small data: Opportunities and challenges for data science and the social services sector

Lauri Goldkind Geri L. Dimas R. Konrad

Abstrak

The social services sector, comprised of a constellation of programs meeting critical human needs, lacks the resources and infrastructure to implement data science tools. As the use of data science continues to expand, it has been accompanied by a rise in interest and commitment to using these tools for social good. This commentary examines overlooked, and under-researched limitations of data science applications in the social sector—the volume, quality, and context of the available data that currently exists in social service systems require unique considerations. We explore how the presence of small data within the social service contexts can result in extrapolation; if not properly considered, data science can negatively impact the organizations data scientists are trying to assist. We conclude by proposing three ways data scientists interested in working within the social services sector can enhance their contributions to the field: refining and leveraging available data, improving collaborations, and respecting data limitations.

Artikel Ilmiah Terkait

Improving child health through Big Data and data science

F. Cole Z. Vesoulis A. Husain

16 Agustus 2022

Abstract Child health is defined by a complex, dynamic network of genetic, cultural, nutritional, infectious, and environmental determinants at distinct, developmentally determined epochs from preconception to adolescence. This network shapes the future of children, susceptibilities to adult diseases, and individual child health outcomes. Evolution selects characteristics during fetal life, infancy, childhood, and adolescence that adapt to predictable and unpredictable exposures/stresses by creating alternative developmental phenotype trajectories. While child health has improved in the United States and globally over the past 30 years, continued improvement requires access to data that fully represent the complexity of these interactions and to new analytic methods. Big Data and innovative data science methods provide tools to integrate multiple data dimensions for description of best clinical, predictive, and preventive practices, for reducing racial disparities in child health outcomes, for inclusion of patient and family input in medical assessments, and for defining individual disease risk, mechanisms, and therapies. However, leveraging these resources will require new strategies that intentionally address institutional, ethical, regulatory, cultural, technical, and systemic barriers as well as developing partnerships with children and families from diverse backgrounds that acknowledge historical sources of mistrust. We highlight existing pediatric Big Data initiatives and identify areas of future research. Impact Big Data and data science can improve child health. This review highlights the importance for child health of child-specific and life course-based Big Data and data science strategies. This review provides recommendations for future pediatric-specific Big Data and data science research.

Ethnographic data in the age of big data: How to compare and combine

Kristoffer Lind Glavind Andreas Bjerre-Nielsen

1 Januari 2022

Big data enables researchers to closely follow the behavior of large groups of individuals by using high-frequency digital traces. However, these digital traces often lack context, and it is not always clear what is measured. In contrast, data from ethnographic fieldwork follows a limited number of individuals but can provide the context often lacking from big data. Yet, there is an under-explored potential in combining ethnographic data with big data and other digital data sources. This paper presents ways that quantitative research designs can combine big data and ethnographic data and account for the synergies that such combinations can provide. We highlight the differences and similarities between ethnographic data and big data, focusing on the three dimensions: individuals, depth of information, and time. We outline how ethnographic data can validate big data by providing a “ground truth” and complement it by giving a “thick description.” Further, we lay out ways that analysis carried out using big data could benefit from collaboration with ethnographers, and we discuss the potential within the fields of machine learning and causal inference.

Data science: a game changer for science and innovation

P. Pagano Valerio Grossi D. Pedreschi + 3 lainnya

19 April 2021

This paper shows data science’s potential for disruptive innovation in science, industry, policy, and people’s lives. We present how data science impacts science and society at large in the coming years, including ethical problems in managing human behavior data and considering the quantitative expectations of data science economic impact. We introduce concepts such as open science and e-infrastructure as useful tools for supporting ethical data science and training new generations of data scientists. Finally, this work outlines SoBigData Research Infrastructure as an easy-to-access platform for executing complex data science processes. The services proposed by SoBigData are aimed at using data science to understand the complexity of our contemporary, globally interconnected society.

Data science literacy: Toward a philosophy of accessible and adaptable data science skill development in public administration programs

Michael Overton Stephen W. Kleinschmit

1 April 2021

Public administration is struggling to contend with a substantial shift in practice fueled by the accelerating adoption of information technology. New skills, competencies and pedagogies are required by the field to help overcome the data-skills gap. As a means to address these deficiencies, we introduce the Data Science Literacy Framework, a heuristic for incorporating data science principles into public administration programs. The framework suggests that data literacy is the dominant principle underlying a shift in professional practice, accentuated by an understanding of computational science, statistical methodology, and data-adjacent domain knowledge. A combination of new and existing skills meshed into public administration curriculums help implement these principles and advance public administration education.

Data science approaches to confronting the COVID-19 pandemic: a narrative review

Daniel Dajun Zeng Jianxi Gao Joseph T. Wu + 2 lainnya

22 November 2021

During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale ‘big data’ generated and harnessed for combating the COVID-19 pandemic. In this paper, we review the newly born data science approaches to confronting COVID-19, including the estimation of epidemiological parameters, digital contact tracing, diagnosis, policy-making, resource allocation, risk assessment, mental health surveillance, social media analytics, drug repurposing and drug development. We compare the new approaches with conventional epidemiological studies, discuss lessons we learned from the COVID-19 pandemic, and highlight opportunities and challenges of data science approaches to confronting future infectious disease epidemics. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.