DOI: 10.1002/spy2.295
Terbit pada 10 Januari 2023 Pada Security and Privacy

Multi‐aspects AI‐based modeling and adversarial learning for cybersecurity intelligence and robustness: A comprehensive overview

Iqbal H. Sarker

Abstrak

Due to the rising dependency on digital technology, cybersecurity has emerged as a more prominent field of research and application that typically focuses on securing devices, networks, systems, data and other resources from various cyber‐attacks, threats, risks, damages, or unauthorized access. Artificial intelligence (AI), also referred to as a crucial technology of the current Fourth Industrial Revolution (Industry 4.0 or 4IR), could be the key to intelligently dealing with these cyber issues. Various forms of AI methodologies, such as analytical, functional, interactive, textual as well as visual AI can be employed to get the desired cyber solutions according to their computational capabilities. However, the dynamic nature and complexity of real‐world situations and data gathered from various cyber sources make it challenging nowadays to build an effective AI‐based security model. Moreover, defending robustly against adversarial attacks is still an open question in the area. In this article, we provide a comprehensive view on “Cybersecurity Intelligence and Robustness,” emphasizing multi‐aspects AI‐based modeling and adversarial learning that could lead to addressing diverse issues in various cyber applications areas such as detecting malware or intrusions, zero‐day attacks, phishing, data breach, cyberbullying and other cybercrimes. Thus the eventual security modeling process could be automated, intelligent, and robust compared to traditional security systems. We also emphasize and draw attention to the future aspects of cybersecurity intelligence and robustness along with the research direction within the context of our study. Overall, our goal is not only to explore AI‐based modeling and pertinent methodologies but also to focus on the resulting model's applicability for securing our digital systems and society.

Artikel Ilmiah Terkait

AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research Directions

Iqbal H. Sarker Md. Hasan Furhad Raza Nowrozy

25 Januari 2021

Artificial intelligence (AI) is one of the key technologies of the Fourth Industrial Revolution (or Industry 4.0), which can be used for the protection of Internet-connected systems from cyber threats, attacks, damage, or unauthorized access. To intelligently solve today’s various cybersecurity issues, popular AI techniques involving machine learning and deep learning methods, the concept of natural language processing, knowledge representation and reasoning, as well as the concept of knowledge or rule-based expert systems modeling can be used. Based on these AI methods, in this paper, we present a comprehensive view on “AI-driven Cybersecurity” that can play an important role for intelligent cybersecurity services and management. The security intelligence modeling based on such AI methods can make the cybersecurity computing process automated and intelligent than the conventional security systems. We also highlight several research directions within the scope of our study, which can help researchers do future research in the area. Overall, this paper’s ultimate objective is to serve as a reference point and guidelines for cybersecurity researchers as well as industry professionals in the area, especially from an intelligent computing or AI-based technical point of view.

The Role of Machine Learning in Cybersecurity

Giovanni Apruzzese Fabio Di Franco Wissam Mallouli + 4 lainnya

20 Juni 2022

Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a significant discrepancy between research and practice. Such a discrepancy has its root cause in the current state of the art, which does not allow us to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless its pros and cons are understood by a broad audience. This article is the first attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain—to any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrinsic problems affecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute to future developments of ML in cybersecurity, which is essential for further progress in this field. Our contributions are complemented with two real case studies describing industrial applications of ML as defense against cyber-threats.

Cybersecurity data science: an overview from machine learning perspective

P. Watters Alex Ng A. Kayes + 3 lainnya

11 Juni 2020

In a computing context, cybersecurity is undergoing massive shifts in technology and its operations in recent days, and data science is driving the change. Extracting security incident patterns or insights from cybersecurity data and building corresponding data-driven model, is the key to make a security system automated and intelligent. To understand and analyze the actual phenomena with data, various scientific methods, machine learning techniques, processes, and systems are used, which is commonly known as data science. In this paper, we focus and briefly discuss on cybersecurity data science, where the data is being gathered from relevant cybersecurity sources, and the analytics complement the latest data-driven patterns for providing more effective security solutions. The concept of cybersecurity data science allows making the computing process more actionable and intelligent as compared to traditional ones in the domain of cybersecurity. We then discuss and summarize a number of associated research issues and future directions. Furthermore, we provide a machine learning based multi-layered framework for the purpose of cybersecurity modeling. Overall, our goal is not only to discuss cybersecurity data science and relevant methods but also to focus the applicability towards data-driven intelligent decision making for protecting the systems from cyber-attacks.

Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

Luca Ferretti M. Andreolini Mirco Marchetti + 2 lainnya

17 Juni 2021

The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios, because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this article can help hardening defensive systems by letting cyber defenders address the most critical and real issues and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models.

Advancing cybersecurity: a comprehensive review of AI-driven detection techniques

O. Emam A. A. Abohany Aya H. Salem + 1 lainnya

4 Agustus 2024

As the number and cleverness of cyber-attacks keep increasing rapidly, it's more important than ever to have good ways to detect and prevent them. Recognizing cyber threats quickly and accurately is crucial because they can cause severe damage to individuals and businesses. This paper takes a close look at how we can use artificial intelligence (AI), including machine learning (ML) and deep learning (DL), alongside metaheuristic algorithms to detect cyber-attacks better. We've thoroughly examined over sixty recent studies to measure how effective these AI tools are at identifying and fighting a wide range of cyber threats. Our research includes a diverse array of cyberattacks such as malware attacks, network intrusions, spam, and others, showing that ML and DL methods, together with metaheuristic algorithms, significantly improve how well we can find and respond to cyber threats. We compare these AI methods to find out what they're good at and where they could improve, especially as we face new and changing cyber-attacks. This paper presents a straightforward framework for assessing AI Methods in cyber threat detection. Given the increasing complexity of cyber threats, enhancing AI methods and regularly ensuring strong protection is critical. We evaluate the effectiveness and the limitations of current ML and DL proposed models, in addition to the metaheuristic algorithms. Recognizing these limitations is vital for guiding future enhancements. We're pushing for smart and flexible solutions that can adapt to new challenges. The findings from our research suggest that the future of protecting against cyber-attacks will rely on continuously updating AI methods to stay ahead of hackers' latest tricks.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.