DOI: 10.1109/TSE.2023.3308952
Terbit pada 19 November 2022 Pada IEEE Transactions on Software Engineering

Do Pretrained Language Models Indeed Understand Software Engineering Tasks?

Yao Li Tao Zhang Dawei Yuan + 3 penulis

Abstrak

Artificial intelligence (AI) for software engineering (SE) tasks has recently achieved promising performance. In this article, we investigate to what extent the pre-trained language model truly understands those SE tasks such as code search, code summarization, etc. We conduct a comprehensive empirical study on a board set of AI for SE (AI4SE) tasks by feeding them with variant inputs: 1) with various masking rates and 2) with sufficient input subset method. Then, the trained models are evaluated on different SE tasks, including code search, code summarization, and duplicate bug report detection. Our experimental results show that pre-trained language models are insensitive to the given input, thus they achieve similar performance in these three SE tasks. We refer to this phenomenon as overinterpretation, where a model confidently makes a decision without salient features, or where a model finds some irrelevant relationships between the final decision and the dataset. Our study investigates two approaches to mitigate the overinterpretation phenomenon: whole word mask strategy and ensembling. To the best of our knowledge, we are the first to reveal this overinterpretation phenomenon to the AI4SE community, which is an important reminder for researchers to design the input for the models and calls for necessary future work in understanding and implementing AI4SE tasks.

Artikel Ilmiah Terkait

Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code

Jianguo Li Zi Gong Rui Wang + 5 lainnya

14 November 2023

In this work we systematically review the recent advancements in software engineering with language models, covering 70+ models, 40+ evaluation tasks, 180+ datasets, and 900 related works. Unlike previous works, we integrate software engineering (SE) with natural language processing (NLP) by discussing the perspectives of both sides: SE applies language models for development automation, while NLP adopts SE tasks for language model evaluation. We break down code processing models into general language models represented by the GPT family and specialized models that are specifically pretrained on code, often with tailored objectives. We discuss the relations and differences between these models, and highlight the historical transition of code modeling from statistical models and RNNs to pretrained Transformers and LLMs, which is exactly the same course that had been taken by NLP. We also go beyond programming and review LLMs' application in other software engineering activities including requirement engineering, testing, deployment, and operations in an endeavor to provide a global view of NLP in SE, and identify key challenges and potential future directions in this domain. We keep the survey open and updated on GitHub at https://github.com/codefuse-ai/Awesome-Code-LLM.

Natural Language Generation and Understanding of Big Code for AI-Assisted Programming: A Review

Shangxin Guo C. Hang C. Tan + 2 lainnya

1 Juni 2023

This paper provides a comprehensive review of the literature concerning the utilization of Natural Language Processing (NLP) techniques, with a particular focus on transformer-based large language models (LLMs) trained using Big Code, within the domain of AI-assisted programming tasks. LLMs, augmented with software naturalness, have played a crucial role in facilitating AI-assisted programming applications, including code generation, code completion, code translation, code refinement, code summarization, defect detection, and clone detection. Notable examples of such applications include the GitHub Copilot powered by OpenAI’s Codex and DeepMind AlphaCode. This paper presents an overview of the major LLMs and their applications in downstream tasks related to AI-assisted programming. Furthermore, it explores the challenges and opportunities associated with incorporating NLP techniques with software naturalness in these applications, with a discussion on extending AI-assisted programming capabilities to Apple’s Xcode for mobile software development. This paper also presents the challenges of and opportunities for incorporating NLP techniques with software naturalness, empowering developers with advanced coding assistance and streamlining the software development process.

Prompt Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in Automated Software Engineering Tasks

Maleknaz Nayebi Song Wang Clark Tang + 3 lainnya

2023

The advancements in Large Language Models (LLMs) have opened up new opportunities for Automated Software Engineering (ASE). Two orthogonal approaches have been widely used to customize LLMs for ASE tasks, i.e., prompt engineering and fine-tuning. Prompt engineering-based approaches leverage different prompting strategies to query LLMs (e.g., ChatGPT ) to automate a task such as code generation, while fine-tuning-based approaches further train the pre-trained models (e.g., CodeBERT ) on customized data related to the down-stream task (in this example, code generation datasets). However, to date, there is no comprehensive and in-depth analysis of these two orthogonal approaches, in the ASE literature. In this paper, we investigate the effectiveness of state-of-the-art LLM, i.e., GPT-4 , with three different prompting engineering techniques (i.e., basic prompting, in-context learning, and task-specific prompting) against 18 fine-tuned LLMs on three typical ASE tasks, i.e., code generation, code summarization, and code translation. Our quantitative analysis of these prompting strategies suggests that prompt engineering GPT-4 cannot necessarily and significantly outperform fine-tuning smaller/older LLMs in all three tasks. For comment generation, GPT-4 with the best prompting strategy (i.e., task-specific prompt) had outperformed the first-ranked fine-tuned model by 8.33% points on average in BLEU. However, for code generation, the first-ranked fine-tuned model outperforms GPT-4 with best prompting by 16.61% and 28.3% points, on average in BLEU. For code translation, GPT-4 and fine-tuned baselines tie as they outperform each other on different translation tasks. To explore the impact of different prompting strategies, we conducted a user study with 27 graduate students and 10 industry practitioners. From our qualitative analysis, we find that the GPT-4 with conversational prompts (i

ChatGPT: A Study on its Utility for Ubiquitous Software Engineering Tasks

Sourav Mazumdar G. Sridhara Ranjani H.G.

26 Mei 2023

ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot launched by OpenAI on November 30, 2022. OpenAI's GPT-3 family of large language models serve as the foundation for ChatGPT. ChatGPT is fine-tuned with both supervised and reinforcement learning techniques and has received widespread attention for its articulate responses across diverse domains of knowledge. In this study, we explore how ChatGPT can be used to help with common software engineering tasks. Many of the ubiquitous tasks covering the breadth of software engineering such as ambiguity resolution in software requirements, method name suggestion, test case prioritization, code review, log summarization can potentially be performed using ChatGPT. In this study, we explore fifteen common software engineering tasks using ChatGPT. We juxtapose and analyze ChatGPT's answers with the respective state of the art outputs (where available) and/or human expert ground truth. Our experiments suggest that for many tasks, ChatGPT does perform credibly and the response from it is detailed and often better than the human expert output or the state of the art output. However, for a few other tasks, ChatGPT in its present form provides incorrect answers and hence is not suited for such tasks.

On the Transferability of Pre-trained Language Models for Low-Resource Programming Languages

Fuxiang Chen David Lo T. Bryksin + 1 lainnya

5 April 2022

A recent study by Ahmed and Devanbu reported that using a corpus of code written in multilingual datasets to fine-tune multilingual Pre-trained Language Models (PLMs) achieves higher performance as opposed to using a corpus of code written in just one programming language. However, no analysis was made with respect to fine-tuning monolingual PLMs. Furthermore, some programming languages are inherently different and code written in one language usually cannot be interchanged with the others, i.e., Ruby and Java code possess very different structure. To better understand how monolingual and multilingual PLMs affect different programming languages, we investigate 1) the performance of PLMs on Ruby for two popular Software Engineering tasks: Code Summarization and Code Search, 2) the strategy (to select programming languages) that works well on fine-tuning multilingual PLMs for Ruby, and 3) the performance of the fine-tuned PLMs on Ruby given different code lengths. In this work, we analyze over a hundred of pre-trained and fine-tuned models. Our results show that 1) multilingual PLMs have a lower Performance-to-Time Ratio (the BLEU, METEOR, or MRR scores over the fine-tuning duration) as compared to monolingual PLMs, 2) our proposed strategy to select target programming languages to fine-tune multilingual PLMs is effective — it reduces the time to fine-tune yet achieves higher performance in Code Summarization and Code Search tasks, and 3) our proposed strategy consistently shows good performance on different code lengths.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.