The Role of Machine Learning in Cybersecurity
Abstrak
Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a significant discrepancy between research and practice. Such a discrepancy has its root cause in the current state of the art, which does not allow us to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless its pros and cons are understood by a broad audience. This article is the first attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain—to any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrinsic problems affecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute to future developments of ML in cybersecurity, which is essential for further progress in this field. Our contributions are complemented with two real case studies describing industrial applications of ML as defense against cyber-threats.
Artikel Ilmiah Terkait
K. Shaukat Shan Chen Dongxi Liu + 4 lainnya
15 Mei 2020
Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity.
P. Watters Alex Ng A. Kayes + 3 lainnya
11 Juni 2020
In a computing context, cybersecurity is undergoing massive shifts in technology and its operations in recent days, and data science is driving the change. Extracting security incident patterns or insights from cybersecurity data and building corresponding data-driven model, is the key to make a security system automated and intelligent. To understand and analyze the actual phenomena with data, various scientific methods, machine learning techniques, processes, and systems are used, which is commonly known as data science. In this paper, we focus and briefly discuss on cybersecurity data science, where the data is being gathered from relevant cybersecurity sources, and the analytics complement the latest data-driven patterns for providing more effective security solutions. The concept of cybersecurity data science allows making the computing process more actionable and intelligent as compared to traditional ones in the domain of cybersecurity. We then discuss and summarize a number of associated research issues and future directions. Furthermore, we provide a machine learning based multi-layered framework for the purpose of cybersecurity modeling. Overall, our goal is not only to discuss cybersecurity data science and relevant methods but also to focus the applicability towards data-driven intelligent decision making for protecting the systems from cyber-attacks.
M. Chowdhury Nafiz Rifat Jayden F Connolly + 3 lainnya
10 Juli 2022
Machine learning is of rising importance in cybersecurity. The primary objective of applying machine learning in cybersecurity is to make the process of malware detection more actionable, scalable and effective than traditional approaches, which require human intervention. The cybersecurity domain involves machine learning challenges that require efficient methodical and theoretical handling. Several machine learning and statistical methods, such as deep learning, support vector machines and Bayesian classification, among others, have proven effective in mitigating cyber-attacks. The detection of hidden trends and insights from network data and building of a corresponding data-driven machine learning model to prevent these attacks is vital to design intelligent security systems. In this survey, the focus is on the machine learning techniques that have been implemented on cybersecurity data to make these systems secure. Existing cybersecurity threats and how machine learning techniques have been used to mitigate these threats have been discussed. The shortcomings of these state-of-the-art models and how attack patterns have evolved over the past decade have also been presented. Our goal is to assess how effective these machine learning techniques are against the ever-increasing threat of malware that plagues our online community.
Mahmoud Abdelsalam Maanak Gupta Sudip Mittal
21 September 2020
The use of Artificial Intelligence (AI) and Machine Learning (ML) to solve cybersecurity problems has been gaining traction within industry and academia, in part as a response to widespread malware attacks on critical systems, such as cloud infrastructures, government offices or hospitals, and the vast amounts of data they generate. AI- and ML-assisted cybersecurity offers data-driven automation that could enable security systems to identify and respond to cyber threats in real time. However, there is currently a shortfall of professionals trained in AI and ML for cybersecurity. Here we address the shortfall by developing lab-intensive modules that enable undergraduate and graduate students to gain fundamental and advanced knowledge in applying AI and ML techniques to real-world datasets to learn about Cyber Threat Intelligence (CTI), malware analysis, and classification, among other important topics in cybersecurity. Here we describe six self-contained and adaptive modules in "AI-assisted Malware Analysis." Topics include: (1) CTI and malware attack stages, (2) malware knowledge representation and CTI sharing, (3) malware data collection and feature identification, (4) AI-assisted malware detection, (5) malware classification and attribution, and (6) advanced malware research topics and case studies such as adversarial learning and Advanced Persistent Threat (APT) detection.
Md Azhad Hossain Rakibul Hasan Md Khokan Bhuyan + 3 lainnya
16 Oktober 2024
In today's interconnected world, the dissemination of vast amounts of information through the internet has become ubiquitous, facilitating seamless communication and connectivity across the globe. However, this digital landscape is fraught with cybersecurity threats, posing significant challenges to individuals, businesses, and organizations alike. In response to these evolving risks, there has been a burgeoning interest in leveraging machine learning techniques to bolster cybersecurity defenses. Through a meticulous examination of 736 research papers spanning from 2012 to 2024, our comprehensive analysis identified 501 pertinent works, shedding light on the recent trends in this critical research domain. By deploying a systematic literature review (SLR) we categorize these papers based on implementation methodologies, article types, publishers, and efficacy, and offer a coherent and visually informative representation of the landscape. This endeavor underscores the immense potential of machine learning in fortifying cybersecurity measures and serves as a valuable resource for researchers, students, publishers, and industry experts seeking to navigate and contribute to the dynamic field of machine learning for cybersecurity.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.