DOI: 10.1109/CVPR52688.2022.01016
Terbit pada 9 Maret 2022 Pada Computer Vision and Pattern Recognition

Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers

Michael Lohaus Chris Russell Matthäus Kleindessner + 4 penulis

Abstrak

Algorithmic fairness is frequently motivated in terms of a trade-off in which overall performance is decreased so as to improve performance on disadvantaged groups where the algorithm would otherwise be less accurate. Contrary to this, we find that applying existing fairness approaches to computer vision improve fairness by degrading the performance of classifiers across all groups (with increased degradation on the best performing groups). Extending the bias-variance decomposition for classification to fairness, we theoretically explain why the majority of fairness methods designed for low capacity models should not be used in settings involving high-capacity models, a scenario common to computer vision. We corroborate this analysis with extensive experimental support that shows that many of the fairness heuristics used in computer vision also degrade performance on the most disadvantaged groups. Building on these insights, we propose an adaptive augmentation strategy that, uniquely, of all methods tested, improves performance for the disadvantaged groups.

Artikel Ilmiah Terkait

FACET: Fairness in Computer Vision Evaluation Benchmark

Melissa Hall Cheng-Yang Fu Chloé Rolland + 5 lainnya

31 Agustus 2023

Computer vision models have known performance disparities across attributes such as gender and skin tone. This means during tasks such as classification and detection, model performance differs for certain classes based on the demographics of the people in the image. These disparities have been shown to exist, but until now there has not been a unified approach to measure these differences for common use-cases of computer vision models. We present a new benchmark named FACET (FAirness in Computer Vision EvaluaTion), a large, publicly available evaluation set of 32k images for some of the most common vision tasks - image classification, object detection and segmentation. For every image in FACET, we hired expert reviewers to manually annotate person-related attributes such as perceived skin tone and hair type, manually draw bounding boxes and label fine-grained person-related classes such as disk jockey or guitarist. In addition, we use FACET to benchmark state-of-the-art vision models and present a deeper understanding of potential performance disparities and challenges across sensitive demographic attributes. With the exhaustive annotations collected, we probe models using single demographics attributes as well as multiple attributes using an intersectional approach (e.g. hair color and perceived skin tone). Our results show that classification, detection, segmentation, and visual grounding models exhibit performance disparities across demographic attributes and intersections of attributes. These harms suggest that not all people represented in datasets receive fair and equitable treatment in these vision tasks. We hope current and future results using our benchmark will contribute to fairer, more robust vision models. FACET is available publicly at https://facet.metademolab.com.

Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey

Zhenpeng Chen M. Harman J Zhang + 2 lainnya

15 Juli 2022

This article provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning bias mitigation for ML classifiers. These methods can be distinguished based on their intervention procedure (i.e., pre-processing, in-processing, post-processing) and the technique they apply. We investigate how existing bias mitigation methods are evaluated in the literature. In particular, we consider datasets, metrics, and benchmarking. Based on the gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating bias mitigation methods?), we hope to support practitioners in making informed choices when developing and evaluating new bias mitigation methods.

Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis

Changjian Shui Raghav Mehta T. Arbel

6 Maret 2023

Although deep learning (DL) models have shown great success in many medical image analysis tasks, deployment of the resulting models into real clinical contexts requires: (1) that they exhibit robustness and fairness across different sub-populations, and (2) that the confidence in DL model predictions be accurately expressed in the form of uncertainties. Unfortunately, recent studies have indeed shown significant biases in DL models across demographic subgroups (e.g., race, sex, age) in the context of medical image analysis, indicating a lack of fairness in the models. Although several methods have been proposed in the ML literature to mitigate a lack of fairness in DL models, they focus entirely on the absolute performance between groups without considering their effect on uncertainty estimation. In this work, we present the first exploration of the effect of popular fairness models on overcoming biases across subgroups in medical image analysis in terms of bottom-line performance, and their effects on uncertainty quantification. We perform extensive experiments on three different clinically relevant tasks: (i) skin lesion classification, (ii) brain tumour segmentation, and (iii) Alzheimer's disease clinical score regression. Our results indicate that popular ML methods, such as data-balancing and distributionally robust optimization, succeed in mitigating fairness issues in terms of the model performances for some of the tasks. However, this can come at the cost of poor uncertainty estimates associated with the model predictions. This tradeoff must be mitigated if fairness models are to be adopted in medical image analysis.

A Review on Fairness in Machine Learning

E. Shmueli Dana Pessach

3 Februari 2022

An increasing number of decisions regarding the daily lives of human beings are being controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging from healthcare, transportation, and education to college admissions, recruitment, provision of loans, and many more realms. Since they now touch on many aspects of our lives, it is crucial to develop ML algorithms that are not only accurate but also objective and fair. Recent studies have shown that algorithmic decision making may be inherently prone to unfairness, even when there is no intention for it. This article presents an overview of the main concepts of identifying, measuring, and improving algorithmic fairness when using ML algorithms, focusing primarily on classification tasks. The article begins by discussing the causes of algorithmic bias and unfairness and the common definitions and measures for fairness. Fairness-enhancing mechanisms are then reviewed and divided into pre-process, in-process, and post-process mechanisms. A comprehensive comparison of the mechanisms is then conducted, toward a better understanding of which mechanisms should be used in different scenarios. The article ends by reviewing several emerging research sub-fields of algorithmic fairness, beyond classification.

Fairness in Machine Learning: A Survey

C. Haas Simon Caton

4 Oktober 2020

When Machine Learning technologies are used in contexts that affect citizens, companies as well as researchers need to be confident that there will not be any unexpected social implications, such as bias towards gender, ethnicity, and/or people with disabilities. There is significant literature on approaches to mitigate bias and promote fairness, yet the area is complex and hard to penetrate for newcomers to the domain. This article seeks to provide an overview of the different schools of thought and approaches that aim to increase the fairness of Machine Learning. It organizes approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas. Although much of the literature emphasizes binary classification, a discussion of fairness in regression, recommender systems, and unsupervised learning is also provided along with a selection of currently available open source libraries. The article concludes by summarizing open challenges articulated as five dilemmas for fairness research.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.