DOI: 10.7759/cureus.59507
Terbit pada 1 Mei 2024 Pada Cureus

Deep Learning Approaches for Medical Image Analysis and Diagnosis

Naseebia Khan Gopal Kumar Thakur Shahnawaz Khan + 2 penulis

Abstrak

In addition to enhancing diagnostic accuracy, deep learning techniques offer the potential to streamline workflows, reduce interpretation time, and ultimately improve patient outcomes. The scalability and adaptability of deep learning algorithms enable their deployment across diverse clinical settings, ranging from radiology departments to point-of-care facilities. Furthermore, ongoing research efforts focus on addressing the challenges of data heterogeneity, model interpretability, and regulatory compliance, paving the way for seamless integration of deep learning solutions into routine clinical practice. As the field continues to evolve, collaborations between clinicians, data scientists, and industry stakeholders will be paramount in harnessing the full potential of deep learning for advancing medical image analysis and diagnosis. Furthermore, the integration of deep learning algorithms with other technologies, including natural language processing and computer vision, may foster multimodal medical data analysis and clinical decision support systems to improve patient care. The future of deep learning in medical image analysis and diagnosis is promising. With each success and advancement, this technology is getting closer to being leveraged for medical purposes. Beyond medical image analysis, patient care pathways like multimodal imaging, imaging genomics, and intelligent operating rooms or intensive care units can benefit from deep learning models.

Artikel Ilmiah Terkait

Medical image analysis using deep learning algorithms

Yanzhou Zhang Haisheng Zhu Yuanyuan Jiang + 1 lainnya

7 November 2023

In the field of medical image analysis within deep learning (DL), the importance of employing advanced DL techniques cannot be overstated. DL has achieved impressive results in various areas, making it particularly noteworthy for medical image analysis in healthcare. The integration of DL with medical image analysis enables real-time analysis of vast and intricate datasets, yielding insights that significantly enhance healthcare outcomes and operational efficiency in the industry. This extensive review of existing literature conducts a thorough examination of the most recent deep learning (DL) approaches designed to address the difficulties faced in medical healthcare, particularly focusing on the use of deep learning algorithms in medical image analysis. Falling all the investigated papers into five different categories in terms of their techniques, we have assessed them according to some critical parameters. Through a systematic categorization of state-of-the-art DL techniques, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), Long Short-term Memory (LSTM) models, and hybrid models, this study explores their underlying principles, advantages, limitations, methodologies, simulation environments, and datasets. Based on our results, Python was the most frequent programming language used for implementing the proposed methods in the investigated papers. Notably, the majority of the scrutinized papers were published in 2021, underscoring the contemporaneous nature of the research. Moreover, this review accentuates the forefront advancements in DL techniques and their practical applications within the realm of medical image analysis, while simultaneously addressing the challenges that hinder the widespread implementation of DL in image analysis within the medical healthcare domains. These discerned insights serve as compelling impetuses for future studies aimed at the progressive advancement of image analysis in medical healthcare research. The evaluation metrics employed across the reviewed articles encompass a broad spectrum of features, encompassing accuracy, sensitivity, specificity, F-score, robustness, computational complexity, and generalizability.

A review on deep learning in medical image analysis

K. Balasamy S. Suganyadevi V. Seethalakshmi

4 September 2021

Ongoing improvements in AI, particularly concerning deep learning techniques, are assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the quickest developing field in artificial intelligence and is effectively utilized lately in numerous areas, including medication. A brief outline is given on studies carried out on the region of application: neuro, brain, retinal, pneumonic, computerized pathology, bosom, heart, breast, bone, stomach, and musculoskeletal. For information exploration, knowledge deployment, and knowledge-based prediction, deep learning networks can be successfully applied to big data. In the field of medical image processing methods and analysis, fundamental information and state-of-the-art approaches with deep learning are presented in this paper. The primary goals of this paper are to present research on medical image processing as well as to define and implement the key guidelines that are identified and addressed.

MONAI: An open-source framework for deep learning in healthcare

K. Farahani Michael Zephyr S. Ourselin + 53 lainnya

4 November 2022

Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.

Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction.

Dinggang Shen E. Siegel Tianming Liu

22 Februari 2022

The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in diagnosis, prediction, and management for COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Deep Learning in Medical Image Analysis

Yudong Zhang Z. Dong J. Górriz

1 April 2021

Over recent years, deep learning (DL) has established itself as a powerful tool across a broad spectrum of domains in imaging-e [...].

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.