Reviewing the current state of virtual reality integration in medical education - a scoping review
Abstrak
Background In medical education, new technologies like Virtual Reality (VR) are increasingly integrated to enhance digital learning. Originally used to train surgical procedures, now use cases also cover emergency scenarios and non-technical skills like clinical decision-making. This scoping review aims to provide an overview of VR in medical education, including requirements, advantages, disadvantages, as well as evaluation methods and respective study results to establish a foundation for future VR integration into medical curricula. Methods This review follows the updated JBI methodology for scoping reviews and adheres to the respective PRISMA extension. We included reviews in English or German language from 2012 to March 2022 that examine the use of VR in education for medical and nursing students, registered nurses, and qualified physicians. Data extraction focused on medical specialties, subjects, curricula, technical/didactic requirements, evaluation methods and study outcomes as well as advantages and disadvantages of VR. Results A total of 763 records were identified. After eligibility assessment, 69 studies were included. Nearly half of them were published between 2021 and 2022, predominantly from high-income countries. Most reviews focused on surgical training in laparoscopic and minimally invasive procedures (43.5%) and included studies with qualified physicians as participants (43.5%). Technical, didactic and organisational requirements were highlighted and evaluations covering performance time and quality, skills acquisition and validity, often showed positive outcomes. Accessibility, repeatability, cost-effectiveness, and improved skill development were reported as advantages, while financial challenges, technical limitations, lack of scientific evidence, and potential user discomfort were cited as disadvantages. Discussion Despite a high potential of VR in medical education, there are mandatory requirements for its integration into medical curricula addressing challenges related to finances, technical limitations, and didactic aspects. The reported lack of standardised and validated guidelines for evaluating VR training must be overcome to enable high-quality evidence for VR usage in medical education. Interdisciplinary teams of software developers, AI experts, designers, medical didactics experts and end users are required to design useful VR courses. Technical issues and compromised realism can be mitigated by further technological advancements.
Artikel Ilmiah Terkait
Callaham A Brock Dipal Mistry Tom Lindsey
1 Desember 2023
Virtual reality (VR) uses computer-generated and three-dimensional environments to create immersive experiences through the use of interactive devices that simulate virtual environments in many forms, such as 3D, screen-based, or room-based. Users can engage in the environment with objects, characters, and scenes, making individuals assume they are experiencing a real-life scenario. VR has been adopted across medical and nursing fields to supplement clinically relevant and practical teaching. However, the effectiveness of this interactive form of learning has come a long way with improvements in accessibility, cost, and technicalities. The immersive simulated environment that VR has to offer today initially began with screen-based learning and then the 360-video method. These previously sought-out methods were eventually found to disconnect the students from engaging in the learning environment that present-day VR systems are designed to provide. Interactive VR offers a dynamic platform for medical training. These simulations benefit the learner by allowing them to interact within case scenarios and virtual wards, as well as with patients, colleagues, and relatives. To mimic real-life encounters, the student can take a patient’s history and physical exam, investigate, diagnose, and provide treatment. The simulated patient can express emotions, concerns, and signs of a poor state of health. All these factors play into a healthcare provider’s competency to think critically and clinically in decision-making. This practice is now being used in many surgical programs and medical education curricula. The use of simulation in VR is continuously being proven to decrease injury, increase operation speed, and improve overall outcomes in patient-centered care. VR simulation differs from in-person simulation training in that the VR modality of learning is more accessible and replicable than the latter. By comparing research studies and reviews of medical programs that incorporated VR into their curricula, we were able to assess the state of VR in medical education and where this technology could lead to future implementation in medical programs. Our review aimed to give insight into the existing evidence, the gaps in the use of VR in medical education, and the potential benefits this modality of learning can have going forward in this field of study. Medical students have demonstrated significantly enhanced knowledge gain when using immersive interactive VR over screen-based learning. Given the improvements in students’ performance due to these dynamic and collaborative learning experiences, immersive VR training will become a standard in the development of clinical skills and ensure patient safety. Although the emphasis on empathy began later in the journey of gaining VR as a part of medical education, there is a need to gain those skills as early as possible in medical school. Implementing the use of VR as a supplement in medical education allows students to practice simulated patient encounters along with an array of different academic endeavors. By doing so, students will gain competency and confidence as they encounter patients during their clinical rotations and clinical practice.
Eun-Young Kim Hyeon-Young Kim
22 Februari 2023
Several studies have examined the effect of virtual reality (VR) education. However, they are mostly systematic reviews or meta-analyses focusing on doctors and residents; they fail to consider VR medical education for a broader range of learners. We evaluated the effectiveness of VR education for health professionals and identified the essential features of education. Randomized controlled trials published from January 2000 to April 2020 were identified from PubMed, Embase, CINAHL, and the Cochrane Library (n = 299). The randomized studies’ bias risk was evaluated using Cochrane’s Risk of Bias tool. Meta- and subgroup-analyses were conducted using Review Manager 5.4.1. The overall effect was measured using Hedges’ g and determined using Z-statistics (p < 0.05). Heterogeneity was assessed using X2 and I2 statistics. Among the identified records, 25 studies were selected through systematic review, and 18 studies were included in the meta-analysis. We identified a significant improvement in the VR group’s skill and satisfaction levels, and that less immersive VR was more efficacious for knowledge outcomes than fully immersive VR. Maximizing the advantages of VR will increase learning opportunities and complement the limited clinical experience, thus improving medical services. A systematic and efficient VR medical education program will greatly enhance learners’ core competencies.
George Manias Mohy Uddin D. Kyriazis + 6 lainnya
1 Januari 2023
Due to the challenges and restrictions posed by COVID-19 pandemic, technology and digital solutions played an important role in the rendering of necessary healthcare services, notably in medical education and clinical care. The aim of this scoping review was to analyze and sum up the most recent developments in Virtual Reality (VR) use for therapeutic care and medical education, with a focus on training medical students and patients. We identified 3743 studies, of which 28 were ultimately selected for the review. The search strategy followed the most recent Preferred Reporting Items for Systematic Reviews and Meta-Analysis for scoping review (PRISMA-ScR) guidelines. 11 studies (39.3%) in the field of medical education assessed different domains, such as knowledge, skills, attitudes, confidence, self-efficacy, and empathy. 17 studies (60.7%) focused on clinical care, particularly in the areas of mental health, and rehabilitation. Among these, 13 studies also investigated user experiences and feasibility in addition to clinical outcomes. Overall, the findings of our review reported considerable improvements in terms of medical education and clinical care. VR systems were also found to be safe, engaging, and beneficial by the studies’ participants. There were huge variations in studies with respect to the study designs, VR contents, devices, evaluation methods, and treatment periods. In the future, studies may focus on creating definitive guidelines that can help in improving patient care further. Hence, there is an urgent need for researchers to collaborate with the VR industry and healthcare professionals to foster a better understanding of contents and simulation development.
Diego Fabián Vique López T. Tene Paulina Elizabeth Valverde Aguirre + 2 lainnya
14 Maret 2024
Objective This umbrella review aims to ascertain the extent to which immersive Virtual Reality (VR) and Augmented Reality (AR) technologies improve specific competencies in healthcare professionals within medical education and training, in contrast to traditional educational methods or no intervention. Methods Adhering to PRISMA guidelines and the PICOS approach, a systematic literature search was conducted across major databases to identify studies examining the use of VR and AR in medical education. Eligible studies were screened and categorized based on the PICOS criteria. Descriptive statistics and chi-square tests were employed to analyze the data, supplemented by the Fisher test for small sample sizes or specific conditions. Analysis The analysis involved cross-tabulating the stages of work (Development and Testing, Results, Evaluated) and variables of interest (Performance, Engagement, Performance and Engagement, Effectiveness, no evaluated) against the types of technologies used. Chi-square tests assessed the associations between these categorical variables. Results A total of 28 studies were included, with the majority reporting increased or positive effects from the use of immersive technologies. VR was the most frequently studied technology, particularly in the “Performance” and “Results” stages. The chi-square analysis, with a Pearson value close to significance (p = 0.052), suggested a non-significant trend toward the association of VR with improved outcomes. Conclusions The results indicate that VR is a prevalent tool in the research landscape of medical education technologies, with a positive trend toward enhancing educational outcomes. However, the statistical analysis did not reveal a significant association, suggesting the need for further research with larger sample sizes. This review underscores the potential of immersive technologies to enhance medical training yet calls for more rigorous studies to establish definitive evidence of their efficacy.
Stuart James K. Ahmed A. Aydın + 2 lainnya
22 November 2022
Aims This review aims to provide an update on the role of augmented reality (AR) in surgical training and investigate whether the use of AR improves performance measures compared to traditional approaches in surgical trainees. Methods PUBMED, EMBASE, Google Scholar, Cochrane Library, British Library and Science Direct were searched following PRIMSA guidelines. All English language original studies pertaining to AR in surgical training were eligible for inclusion. Qualitative analysis was performed and results were categorised according to simulator models, subsequently being evaluated using Messick’s framework for validity and McGaghie’s translational outcomes for simulation-based learning. Results Of the 1132 results retrieved, 45 were included in the study. 29 platforms were identified, with the highest ‘level of effectiveness’ recorded as 3. In terms of validity parameters, 10 AR models received a strong ‘content validity’ score of 2.15 models had a ‘response processes’ score ≥ 1. ‘Internal structure’ and ‘consequences’ were largely not discussed. ‘Relations to other variables’ was the best assessed criterion, with 9 platforms achieving a high score of 2. Overall, the Microsoft HoloLens received the highest level of recommendation for both validity and level of effectiveness. Conclusions Augmented reality in surgical education is feasible and effective as an adjunct to traditional training. The Microsoft HoloLens has shown the most promising results across all parameters and produced improved performance measures in surgical trainees. In terms of the other simulator models, further research is required with stronger study designs, in order to validate the use of AR in surgical training.
Daftar Referensi
2 referensiEffects of Medical Education Program Using Virtual Reality: A Systematic Review and Meta-Analysis
Eun-Young Kim Hyeon-Young Kim
22 Februari 2023
Several studies have examined the effect of virtual reality (VR) education. However, they are mostly systematic reviews or meta-analyses focusing on doctors and residents; they fail to consider VR medical education for a broader range of learners. We evaluated the effectiveness of VR education for health professionals and identified the essential features of education. Randomized controlled trials published from January 2000 to April 2020 were identified from PubMed, Embase, CINAHL, and the Cochrane Library (n = 299). The randomized studies’ bias risk was evaluated using Cochrane’s Risk of Bias tool. Meta- and subgroup-analyses were conducted using Review Manager 5.4.1. The overall effect was measured using Hedges’ g and determined using Z-statistics (p < 0.05). Heterogeneity was assessed using X2 and I2 statistics. Among the identified records, 25 studies were selected through systematic review, and 18 studies were included in the meta-analysis. We identified a significant improvement in the VR group’s skill and satisfaction levels, and that less immersive VR was more efficacious for knowledge outcomes than fully immersive VR. Maximizing the advantages of VR will increase learning opportunities and complement the limited clinical experience, thus improving medical services. A systematic and efficient VR medical education program will greatly enhance learners’ core competencies.
A scoping review to assess the effects of virtual reality in medical education and clinical care
George Manias Mohy Uddin + 7 lainnya
1 Januari 2023
Due to the challenges and restrictions posed by COVID-19 pandemic, technology and digital solutions played an important role in the rendering of necessary healthcare services, notably in medical education and clinical care. The aim of this scoping review was to analyze and sum up the most recent developments in Virtual Reality (VR) use for therapeutic care and medical education, with a focus on training medical students and patients. We identified 3743 studies, of which 28 were ultimately selected for the review. The search strategy followed the most recent Preferred Reporting Items for Systematic Reviews and Meta-Analysis for scoping review (PRISMA-ScR) guidelines. 11 studies (39.3%) in the field of medical education assessed different domains, such as knowledge, skills, attitudes, confidence, self-efficacy, and empathy. 17 studies (60.7%) focused on clinical care, particularly in the areas of mental health, and rehabilitation. Among these, 13 studies also investigated user experiences and feasibility in addition to clinical outcomes. Overall, the findings of our review reported considerable improvements in terms of medical education and clinical care. VR systems were also found to be safe, engaging, and beneficial by the studies’ participants. There were huge variations in studies with respect to the study designs, VR contents, devices, evaluation methods, and treatment periods. In the future, studies may focus on creating definitive guidelines that can help in improving patient care further. Hence, there is an urgent need for researchers to collaborate with the VR industry and healthcare professionals to foster a better understanding of contents and simulation development.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.