A Call for a Humanistic Stance Toward K–12 Data Science Education
Abstrak
There is growing interest in how to better prepare K–12 students to work with data. In this article, we assert that these discussions of teaching and learning must attend to the human dimensions of data work. Specifically, we draw from several established lines of research to argue that practices involving the creation and manipulation of data are shaped by a combination of personal experiences, cultural tools and practices, and political concerns. We demonstrate through two examples how our proposed humanistic stance highlights ways that efforts to make data personally relevant for youth also necessarily implicate cultural and sociopolitical dimensions that affect the design and learning opportunities in data-rich learning environments. We offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.
Artikel Ilmiah Terkait
Magdalena Boucher Luiz Morais Fateme Rajabiyazdi + 18 lainnya
15 Agustus 2023
This paper is a call to action for research and discussion on data visualization education. As visualization evolves and spreads through our professional and personal lives, we need to understand how to support and empower a broad and diverse community of learners in visualization. Data Visualization is a diverse and dynamic discipline that combines knowledge from different fields, is tailored to suit diverse audiences and contexts, and frequently incorporates tacit knowledge. This complex nature leads to a series of interrelated challenges for data visualization education. Driven by a lack of consolidated knowledge, overview, and orientation for visualization education, the 21 authors of this paper—educators and researchers in data visualization—identify and describe 19 challenges informed by our collective practical experience. We organize these challenges around seven themes People, Goals & Assessment, Environment, Motivation, Methods, Materials, and Change. Across these themes, we formulate 43 research questions to address these challenges. As part of our call to action, we then conclude with 5 cross-cutting opportunities and respective action items: embrace DIVERSITY+INCLUSION, build COMMUNITIES, conduct RESEARCH, act AGILE, and relish RESPONSIBILITY. We aim to inspire researchers, educators and learners to drive visualization education forward and discuss why, how, who and where we educate, as we learn to use visualization to address challenges across many scales and many domains in a rapidly changing world: viseducationchallenges.github.io.
Allison S. Theobold
29 Juni 2023
The COVID-19 pandemic caused the flaws of traditional grading systems to become even more apparent. In response, a growing number of educators are transitioning their classrooms to focus on alternative methods of assessment. These subversive methods promote more equitable assessments, as they provide a more accurate picture of what a student has learned, cultivate students' intrinsic motivation, and do not privilege students from certain backgrounds. This article details how alternative grading, specifically "ungrading," was integrated into an introductory data science course. I detail how the course components align with the principles of alternative grading, students' responses to the course structure, and the lessons I learned along the way. Finally, I close with a discussion of how infusing alternative methods of assessment into the classroom stands to cultivate the diversity continually lacking in computer science and data science.
V. Lechner
16 April 2020
Today we are witnessing an increased use of data visualization in society. Across domains such as work, education and the news, various forms of graphs, charts and maps are used to explain, convince and tell stories. In an era in which more and more data are produced and circulated digitally, and digital tools make visualization production increasingly accessible, it is important to study the conditions under which such visual texts are generated, disseminated and thought to be of societal benefit. This book is a contribution to the multi-disciplined and multi-faceted conversation concerning the forms, uses and roles of data visualization in society. Do data visualizations do 'good' or 'bad'? Do they promote understanding and engagement, or do they do ideological work, privileging certain views of the world over others? The contributions in the book engage with these core questions from a range of disciplinary perspectives.
Michael Overton Stephen W. Kleinschmit
1 April 2021
Public administration is struggling to contend with a substantial shift in practice fueled by the accelerating adoption of information technology. New skills, competencies and pedagogies are required by the field to help overcome the data-skills gap. As a means to address these deficiencies, we introduce the Data Science Literacy Framework, a heuristic for incorporating data science principles into public administration programs. The framework suggests that data literacy is the dominant principle underlying a shift in professional practice, accentuated by an understanding of computational science, statistical methodology, and data-adjacent domain knowledge. A combination of new and existing skills meshed into public administration curriculums help implement these principles and advance public administration education.
B. Bishop Chirag Shah I. Song + 10 lainnya
30 Juli 2022
Many disciplines, including the broad Field of Information (iField), offer Data Science (DS) programs. There have been significant efforts exploring an individual discipline's identity and unique contributions to the broader DS education landscape. To advance DS education in the iField, the iSchool Data Science Curriculum Committee (iDSCC) was formed and charged with building and recommending a DS education framework for iSchools. This paper reports on the research process and findings of a series of studies to address important questions: What is the iField identity in the multidisciplinary DS education landscape? What is the status of DS education in iField schools? What knowledge and skills should be included in the core curriculum for iField DS education? What are the jobs available for DS graduates from the iField? What are the differences between graduate‐level and undergraduate‐level DS education? Answers to these questions will not only distinguish an iField approach to DS education but also define critical components of DS curriculum. The results will inform individual DS programs in the iField to develop curriculum to support undergraduate and graduate DS education in their local context.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.