Improving child health through Big Data and data science
Abstrak
Abstract Child health is defined by a complex, dynamic network of genetic, cultural, nutritional, infectious, and environmental determinants at distinct, developmentally determined epochs from preconception to adolescence. This network shapes the future of children, susceptibilities to adult diseases, and individual child health outcomes. Evolution selects characteristics during fetal life, infancy, childhood, and adolescence that adapt to predictable and unpredictable exposures/stresses by creating alternative developmental phenotype trajectories. While child health has improved in the United States and globally over the past 30 years, continued improvement requires access to data that fully represent the complexity of these interactions and to new analytic methods. Big Data and innovative data science methods provide tools to integrate multiple data dimensions for description of best clinical, predictive, and preventive practices, for reducing racial disparities in child health outcomes, for inclusion of patient and family input in medical assessments, and for defining individual disease risk, mechanisms, and therapies. However, leveraging these resources will require new strategies that intentionally address institutional, ethical, regulatory, cultural, technical, and systemic barriers as well as developing partnerships with children and families from diverse backgrounds that acknowledge historical sources of mistrust. We highlight existing pediatric Big Data initiatives and identify areas of future research. Impact Big Data and data science can improve child health. This review highlights the importance for child health of child-specific and life course-based Big Data and data science strategies. This review provides recommendations for future pediatric-specific Big Data and data science research.
Artikel Ilmiah Terkait
Fatna El Mendili Y. Idrissi Youness Filaly + 1 lainnya
30 Maret 2023
Medicine is constantly generating new imaging data, including data from basic research, clinical research, and epidemiology, from health administration and insurance organizations, public health services, and non-conventional data sources such as social media, Internet applications, etc. Healthcare professionals have gained from the integration of big data in many ways, including new tools for decision support, improved clinical research methodologies, treatment efficacy, and personalized care. Finally, there are significant advantages in saving resources and reallocating them to increase productivity and rationalization. In this paper, we will explore how big data can be applied to the field of digital health. We will explain the features of health data, its particularities, and the tools available to use it. In addition, a particular focus is placed on the latest research work that addresses big data analysis in the health domain, as well as the technical and organizational challenges that have been discussed. Finally, we propose a general strategy for medical organizations looking to adopt or leverage big data analytics. Through this study, healthcare organizations and institutions considering the use of big data analytics technology, as well as those already using it, can gain a thorough and comprehensive understanding of the potential use, effective targeting, and expected impact.
C. Camargo L. Liang Y. Raita + 1 lainnya
6 Juli 2021
Clinicians handle a growing amount of clinical, biometric, and biomarker data. In this “big data” era, there is an emerging faith that the answer to all clinical and scientific questions reside in “big data” and that data will transform medicine into precision medicine. However, data by themselves are useless. It is the algorithms encoding causal reasoning and domain (e.g., clinical and biological) knowledge that prove transformative. The recent introduction of (health) data science presents an opportunity to re-think this data-centric view. For example, while precision medicine seeks to provide the right prevention and treatment strategy to the right patients at the right time, its realization cannot be achieved by algorithms that operate exclusively in data-driven prediction modes, as do most machine learning algorithms. Better understanding of data science and its tasks is vital to interpret findings and translate new discoveries into clinical practice. In this review, we first discuss the principles and major tasks of data science by organizing it into three defining tasks: (1) association and prediction, (2) intervention, and (3) counterfactual causal inference. Second, we review commonly-used data science tools with examples in the medical literature. Lastly, we outline current challenges and future directions in the fields of medicine, elaborating on how data science can enhance clinical effectiveness and inform medical practice. As machine learning algorithms become ubiquitous tools to handle quantitatively “big data,” their integration with causal reasoning and domain knowledge is instrumental to qualitatively transform medicine, which will, in turn, improve health outcomes of patients.
B. Somani B. Hameed R. Paul + 5 lainnya
16 Agustus 2021
Data science is an interdisciplinary field that extracts knowledge and insights from many structural and unstructured data, using scientific methods, data mining techniques, machine-learning algorithms, and big data. The healthcare industry generates large datasets of useful information on patient demography, treatment plans, results of medical examinations, insurance, etc. The data collected from the Internet of Things (IoT) devices attract the attention of data scientists. Data science provides aid to process, manage, analyze, and assimilate the large quantities of fragmented, structured, and unstructured data created by healthcare systems. This data requires effective management and analysis to acquire factual results. The process of data cleansing, data mining, data preparation, and data analysis used in healthcare applications is reviewed and discussed in the article. The article provides an insight into the status and prospects of big data analytics in healthcare, highlights the advantages, describes the frameworks and techniques used, briefs about the challenges faced currently, and discusses viable solutions. Data science and big data analytics can provide practical insights and aid in the decision-making of strategic decisions concerning the health system. It helps build a comprehensive view of patients, consumers, and clinicians. Data-driven decision-making opens up new possibilities to boost healthcare quality.
D. Piovani S. Bonovas
1 September 2022
The term Big Data is used to describe extremely large datasets that are complex, multi-dimensional, unstructured, and heterogeneous and that are accumulating rapidly and may be analyzed with appropriate informatic and statistical methodologies to reveal patterns, trends, and associations [...].
Sayantan Khanra Najmul Islam Matti Mäntymäki + 1 lainnya
8 Agustus 2020
ABSTRACT The current study performs a systematic literature review (SLR) to synthesise prior research on the applicability of big data analytics (BDA) in healthcare. The SLR examines the outcomes of 41 studies, and presents them in a comprehensive framework. The findings from this study suggest that applications of BDA in healthcare can be observed from five perspectives, namely, health awareness among the general public, interactions among stakeholders in the healthcare ecosystem, hospital management practices, treatment of specific medical conditions, and technology in healthcare service delivery. This SLR recommends actionable future research agendas for scholars and valuable implications for theory and practice.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.