ChatGPT: perspectives from human–computer interaction and psychology
Abstrak
The release of GPT-4 has garnered widespread attention across various fields, signaling the impending widespread adoption and application of Large Language Models (LLMs). However, previous research has predominantly focused on the technical principles of ChatGPT and its social impact, overlooking its effects on human–computer interaction and user psychology. This paper explores the multifaceted impacts of ChatGPT on human–computer interaction, psychology, and society through a literature review. The author investigates ChatGPT’s technical foundation, including its Transformer architecture and RLHF (Reinforcement Learning from Human Feedback) process, enabling it to generate human-like responses. In terms of human–computer interaction, the author studies the significant improvements GPT models bring to conversational interfaces. The analysis extends to psychological impacts, weighing the potential of ChatGPT to mimic human empathy and support learning against the risks of reduced interpersonal connections. In the commercial and social domains, the paper discusses the applications of ChatGPT in customer service and social services, highlighting the improvements in efficiency and challenges such as privacy issues. Finally, the author offers predictions and recommendations for ChatGPT’s future development directions and its impact on social relationships.
Artikel Ilmiah Terkait
Mohammad Fraiwan Natheer Khasawneh
29 April 2023
ChatGPT is a type of artificial intelligence language model that uses deep learning algorithms to generate human-like responses to text-based prompts. The introduction of the latest ChatGPT version in November of 2022 has caused shockwaves in the industrial and academic communities for its powerful capabilities, plethora of possible applications, and the great possibility for abuse. At the time of writing this work, several other language models (e.g., Google Bard and Meta LLaMA) just came out in an attempt to get a foothold in the vast possible market. These models have the ability to revolutionize the way we interact with computers and have potential applications in many fields, including education, software engineering, healthcare, and marketing. In this paper, we will discuss the possible applications, drawbacks, and research directions using advanced language Chatbots (e.g., ChatGPT) in each of these fields. We first start with a brief introduction and the development timeline of artificial intelligence based language models, then we go through possible applications of such models, after that we discuss the limitations and drawbacks of the current technological state of the art, and finally we point out future possible research directions.
L. Kolbe Stephan Diederich A. Brendel + 1 lainnya
2022
Conversational agents (CAs), described as software with which humans interact through natural language, have increasingly attracted interest in both academia and practice because of improved capabilities driven by advances in artificial intelligence and, specifically, natural language processing. CAs are used in contexts such as peoples private lives, education, and healthcare, as well as in organizations to innovate or automate tasks for example, in marketing, sales, or customer service. In addition to these application contexts, CAs take on different forms in terms of their embodiment, the communication mode, and their (often human-like) design. Despite their popularity, many CAs are unable to fulfill expectations, and fostering a positive user experience is challenging. To better understand how CAs can be designed to fulfill their intended purpose and how humans interact with them, a number of studies focusing on human-computer interaction have been carried out in recent years, which have contributed to our understanding of this technology. However, currently, a structured overview of this research is lacking, thus impeding the systematic identification of research gaps and knowledge on which future studies can build. To address this issue, we conducted an organizing and assessing review of 262 studies, applying a sociotechnical lens to analyze CA research regarding user interaction, context, agent design, as well as CA perceptions and outcomes. This study contributes an overview of the status quo of CA research, identifies four research streams through cluster analysis, and proposes a research agenda comprising six avenues and sixteen directions to move the field forward
Christine P. Lee Bilge Mutlu Callie Y. Kim
6 Januari 2024
Large-language models (LLMs) hold significant promise in improving human-robot interaction, offering advanced conversational skills and versatility in managing diverse, open-ended user requests in various tasks and domains. Despite the potential to transform human-robot interaction, very little is known about the distinctive design requirements for utilizing LLMs in robots, which may differ from text and voice interaction and vary by task and context. To better understand these requirements, we conducted a user study (n = 32) comparing an LLM-powered social robot against text- and voice-based agents, analyzing task-based requirements in conversational tasks, including choose, generate, execute, and negotiate. Our findings show that LLM-powered robots elevate expectations for sophisticated non-verbal cues and excel in connection-building and deliberation, but fall short in logical communication and may induce anxiety. We provide design implications both for robots integrating LLMs and for fine-tuning LLMs for use with robots.CCS CONCEPTS• Human-centered computing → HCI design and evaluation methods; • Computing methodologies → Natural language processing; • Computer systems organization → Robotics.
Walid Hariri
27 Maret 2023
Large language models, pivotal in artificial intelligence, find diverse applications. ChatGPT (Chat Generative Pre-trained Transformer), an OpenAI creation, stands out as a widely adopted, powerful tool. It excels in chatbots, content generation, language translation, recommendations, and medical applications, due to its ability to generate human-like responses, comprehend natural language, and adapt contextually. Its versatility and accuracy make it a potent force in natural language processing (NLP). Despite successes, ChatGPT has limitations, including biased responses and potential reinforcement of harmful language patterns. This article offers a comprehensive overview of ChatGPT, detailing its applications, advantages, and limitations. It also describes the main advancements from GPT-3 to GPT-4 Omni, comparing them with other LLMs like LLaMA 3, Gemini and Deepseek. The paper underscores the ethical imperative when utilizing this robust tool in practical settings. Furthermore, it contributes to ongoing discussions on artificial intelligence's impact on vision and NLP domains, providing insights into prompt engineering techniques.
Piper Vasicek Kevin Seppi Courtni Byun
19 April 2023
Machine Learning models have become more advanced than could have been supposed even a few years ago, often surpassing human performance on many tasks. Large language models (LLM) can produce text indistinguishable from human-produced text. This begs the question, how necessary are humans - even for tasks where humans appear indispensable? Qualitative Analysis (QA) is integral to human-computer interaction research, requiring both human-produced data and human analysis of that data to illuminate human opinions about and experiences with technology. We use GPT-3 and ChatGPT to replace human analysis and then to dispense with human-produced text altogether. We find GPT-3 is capable of automatically identifying themes and generating nuanced analyses of qualitative data arguably similar to those written by human researchers. We also briefly ponder philosophical implications of this research.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.