Systematic Mapping: Artificial Intelligence Techniques in Software Engineering
Abstrak
Artificial Intelligence (AI) has become a core feature of today’s real-world applications, making it a trending topic within the software engineering (SE) community. The rise in the availability of AI techniques encompasses the capability to make rapid, automated, impactful decisions and predictions, leading to the adoption of AI techniques in SE. With industry revolution 4.0, the role of software engineering has become critical for developing productive, efficient, and quality software. Thus, there is a major need for AI techniques to be applied to enhance and improve the critical activities within the software engineering phases. Software is developed through intelligent software engineering phases. This paper concerns a systematic mapping study that aimed to characterize the publication landscape of AI techniques in software engineering. Gaps are identified and discussed by mapping these AI techniques against the SE phases to which they contributed. Many systematic mapping review papers have been produced only for a specific AI technique or a specific SE phase or activity. Hence, to our best of knowledge within the last decade, there is no systematic mapping review that has fully explored the overall trends in AI techniques and their application to all SE phases.
Artikel Ilmiah Terkait
S. Matalonga Stefano Faralli J. Hauck + 2 lainnya
17 Agustus 2023
Context: Artificial intelligence (AI) methods and models have extensively been applied to support different phases of the software development lifecycle, including software testing (ST). Several secondary studies investigated the interplay between AI and ST but restricted the scope of the research to specific domains or sub-domains within either area. Objective: This research aims to explore the overall contribution of AI to ST, while identifying the most popular applications and potential paths for future research directions. Method: We executed a tertiary study following well-established guidelines for conducting systematic literature mappings in software engineering and for answering nine research questions. Results: We identified and analyzed 20 relevant secondary studies. The analysis was performed by drawing from well-recognized AI and ST taxonomies and mapping the selected studies according to them. The resulting mapping and discussions provide extensive and detailed information on the interplay between AI and ST. Conclusion: The application of AI to support ST is a well-consolidated and growing interest research topic. The mapping resulting from our study can be used by researchers to identify opportunities for future research, and by practitioners looking for evidence-based information on which AI-supported technology to possibly adopt in their testing processes.
Xavier Franch Julien Siebert Anna Maria Vollmer + 5 lainnya
5 Mei 2021
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
David Lo
14 Mei 2023
For decades, much software engineering research has been dedicated to devising automated solutions aimed at enhancing developer productivity and elevating software quality. The past two decades have witnessed an unparalleled surge in the development of intelligent solutions tailored for software engineering tasks. This momentum established the Artificial Intelligence for Software Engineering (AI4SE) area, which has swiftly become one of the most active and popular areas within the software engiueering field. This Future of Software Engineering (FoSE) paper navigates through several focal points. It commences with a succinct introduction and history of AI4SE. Thereafter, it underscores the core challenges inherent to AI4SE, particularly highlighting the need to realize trustworthy and synergistic AI4SE. Progressing, the paper paints a vision for the potential leaps achievable if AI4SE's key challenges are surmounted, suggesting a transition toward Software Engineering 2.0. Two strategic roadmaps are then laid out: one centered on realizing trustworthy AI4SE, and the other on fostering synergistic AI4SE. While this paper may not serve as a conclusive guide, its intent is to catalyze further progress. The ultimate aspiration is to position AI4SE as a linchpin in redefining the horizons of software engineering, propelling us toward Software Engineering 2.0.
R. Galanopoulou D. Spinellis Zoe Kotti
17 November 2022
Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities. We systematically collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009 and 2022, covering 6,117 primary studies. The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging for ML. We propose a number of ML for SE research challenges and actions, including conducting further empirical validation and industrial studies on ML, reconsidering deficient SE methods, documenting and automating data collection and pipeline processes, reexamining how industrial practitioners distribute their proprietary data, and implementing incremental ML approaches.
Usman Rafiq Jorge Melegati Chetan Arora + 12 lainnya
28 Oktober 2023
Generative Artificial Intelligence (GenAI) tools have become increasingly prevalent in software development, offering assistance to various managerial and technical project activities. Notable examples of these tools include OpenAIs ChatGPT, GitHub Copilot, and Amazon CodeWhisperer. Although many recent publications have explored and evaluated the application of GenAI, a comprehensive understanding of the current development, applications, limitations, and open challenges remains unclear to many. Particularly, we do not have an overall picture of the current state of GenAI technology in practical software engineering usage scenarios. We conducted a literature review and focus groups for a duration of five months to develop a research agenda on GenAI for Software Engineering. We identified 78 open Research Questions (RQs) in 11 areas of Software Engineering. Our results show that it is possible to explore the adoption of GenAI in partial automation and support decision-making in all software development activities. While the current literature is skewed toward software implementation, quality assurance and software maintenance, other areas, such as requirements engineering, software design, and software engineering education, would need further research attention. Common considerations when implementing GenAI include industry-level assessment, dependability and accuracy, data accessibility, transparency, and sustainability aspects associated with the technology. GenAI is bringing significant changes to the field of software engineering. Nevertheless, the state of research on the topic still remains immature. We believe that this research agenda holds significance and practical value for informing both researchers and practitioners about current applications and guiding future research.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.