Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, And Mitigation Strategies
Abstrak
The significant advancements in applying artificial intelligence (AI) to healthcare decision-making, medical diagnosis, and other domains have simultaneously raised concerns about the fairness and bias of AI systems. This is particularly critical in areas like healthcare, employment, criminal justice, credit scoring, and increasingly, in generative AI models (GenAI) that produce synthetic media. Such systems can lead to unfair outcomes and perpetuate existing inequalities, including generative biases that affect the representation of individuals in synthetic data. This survey study offers a succinct, comprehensive overview of fairness and bias in AI, addressing their sources, impacts, and mitigation strategies. We review sources of bias, such as data, algorithm, and human decision biases—highlighting the emergent issue of generative AI bias, where models may reproduce and amplify societal stereotypes. We assess the societal impact of biased AI systems, focusing on perpetuating inequalities and reinforcing harmful stereotypes, especially as generative AI becomes more prevalent in creating content that influences public perception. We explore various proposed mitigation strategies, discuss the ethical considerations of their implementation, and emphasize the need for interdisciplinary collaboration to ensure effectiveness. Through a systematic literature review spanning multiple academic disciplines, we present definitions of AI bias and its different types, including a detailed look at generative AI bias. We discuss the negative impacts of AI bias on individuals and society and provide an overview of current approaches to mitigate AI bias, including data pre-processing, model selection, and post-processing. We emphasize the unique challenges presented by generative AI models and the importance of strategies specifically tailored to address these. Addressing bias in AI requires a holistic approach involving diverse and representative datasets, enhanced transparency and accountability in AI systems, and the exploration of alternative AI paradigms that prioritize fairness and ethical considerations. This survey contributes to the ongoing discussion on developing fair and unbiased AI systems by providing an overview of the sources, impacts, and mitigation strategies related to AI bias, with a particular focus on the emerging field of generative AI.
Artikel Ilmiah Terkait
Tara S. Behrend R. Landers
14 Februari 2022
Researchers, governments, ethics watchdogs, and the public are increasingly voicing concerns about unfairness and bias in artificial intelligence (AI)-based decision tools. Psychology's more-than-a-century of research on the measurement of psychological traits and the prediction of human behavior can benefit such conversations, yet psychological researchers often find themselves excluded due to mismatches in terminology, values, and goals across disciplines. In the present paper, we begin to build a shared interdisciplinary understanding of AI fairness and bias by first presenting three major lenses, which vary in focus and prototypicality by discipline, from which to consider relevant issues: (a) individual attitudes, (b) legality, ethicality, and morality, and (c) embedded meanings within technical domains. Using these lenses, we next present psychological audits as a standardized approach for evaluating the fairness and bias of AI systems that make predictions about humans across disciplinary perspectives. We present 12 crucial components to audits across three categories: (a) components related to AI models in terms of their source data, design, development, features, processes, and outputs, (b) components related to how information about models and their applications are presented, discussed, and understood from the perspectives of those employing the algorithm, those affected by decisions made using its predictions, and third-party observers, and (c) meta-components that must be considered across all other auditing components, including cultural context, respect for persons, and the integrity of individual research designs used to support all model developer claims. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Dana Moukheiber Haobo Ma Razan Zatarah + 8 lainnya
1 Juni 2023
The adoption of artificial intelligence (AI) algorithms is rapidly increasing in healthcare. Such algorithms may be shaped by various factors such as social determinants of health that can influence health outcomes. While AI algorithms have been proposed as a tool to expand the reach of quality healthcare to underserved communities and improve health equity, recent literature has raised concerns about the propagation of biases and healthcare disparities through implementation of these algorithms. Thus, it is critical to understand the sources of bias inherent in AI-based algorithms. This review aims to highlight the potential sources of bias within each step of developing AI algorithms in healthcare, starting from framing the problem, data collection, preprocessing, development, and validation, as well as their full implementation. For each of these steps, we also discuss strategies to mitigate the bias and disparities. A checklist was developed with recommendations for reducing bias during the development and implementation stages. It is important for developers and users of AI-based algorithms to keep these important considerations in mind to advance health equity for all populations.
Gaelle Cachat-Rosset Alain Klarsfeld
22 Februari 2023
ABSTRACT Artificial intelligence (AI) is present everywhere in the lives of individuals. Unfortunately, several cases of discrimination by AI systems have already been reported. Scholars have warned on risks of AI reproducing existing inequalities or even amplifying them. To tackle these risks and promote responsible AI, many ethics guidelines for AI have emerged recently, including diversity, equity, and inclusion (DEI) principles and practices. However, little is known about the DEI content of these guidelines, and to what extent they meet the most relevant accumulated knowledge from DEI literature. We performed a semi-systematic literature review of the AI guidelines regarding DEI stakes and analyzed 46 guidelines published from 2015 to today. We fleshed out the 14 DEI principles and the 18 DEI practices recommended underlying these 46 guidelines. We found that the guidelines mostly encourage one of the DEI management paradigms, namely fairness, justice, and nondiscrimination, in a limited compliance approach. We found that narrow technical practices are favored over holistic ones. Finally, we conclude that recommended practices for implementing DEI principles in AI should include actions aimed at directly influencing AI actors’ behaviors and awareness of DEI risks, rather than just stating intentions and programs.
T. Tsuboyama Y. Fushimi T. Nakaura + 15 lainnya
4 Agustus 2023
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
C. Haas Simon Caton
4 Oktober 2020
When Machine Learning technologies are used in contexts that affect citizens, companies as well as researchers need to be confident that there will not be any unexpected social implications, such as bias towards gender, ethnicity, and/or people with disabilities. There is significant literature on approaches to mitigate bias and promote fairness, yet the area is complex and hard to penetrate for newcomers to the domain. This article seeks to provide an overview of the different schools of thought and approaches that aim to increase the fairness of Machine Learning. It organizes approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas. Although much of the literature emphasizes binary classification, a discussion of fairness in regression, recommender systems, and unsupervised learning is also provided along with a selection of currently available open source libraries. The article concludes by summarizing open challenges articulated as five dilemmas for fairness research.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.