DOI: -
Terbit pada 30 Januari 2022 Pada arXiv.org

Training and Evaluating a Jupyter Notebook Data Science Assistant

Neel Sundaresan Guillermo Serrato Shubham Chandel + 1 penulis

Abstrak

We study the feasibility of a Data Science assistant powered by a sequence-to-sequence transformer by training a new model JuPyT5 on all publicly available Jupyter Notebook GitHub repositories and developing a new metric: Data Science Problems (DSP). DSP is a collection of 1119 problems curated from 306 pedagogical notebooks with 92 dataset dependencies, natural language and Markdown problem descriptions, and assert-based unit tests. These notebooks were designed to test university students' mastery of various Python implementations of Math and Data Science, and we now leverage them to study the ability of JuPyT5 to understand and pass the tests. We analyze the content of DSP, validate its quality, and we find that given 100 sampling attempts JuPyT5 is able to solve 77.5\% of the DSP problems. We further present various ablation and statistical analyses and compare DSP to other recent natural language to code benchmarks.

Artikel Ilmiah Terkait

Natural Language to Code Generation in Interactive Data Science Notebooks

Wen-Ding Li H. Michalewski A. Rao + 9 lainnya

19 Desember 2022

Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1078 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions. Arcade is publicly available at https://github.com/google-research/arcade-nl2code/.

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Tao Yu Tianyi Zhang Si-yi Wang + 6 lainnya

18 November 2022

We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.

Evaluating a large language model’s ability to solve programming exercises from an introductory bioinformatics course

P. Ridge Paul Denny Stephen R. Piccolo + 2 lainnya

7 Maret 2023

Computer programming is a fundamental tool for life scientists, allowing them to carry out essential research tasks. However, despite various educational efforts, learning to write code can be a challenging endeavor for students and researchers in life-sciences disciplines. Recent advances in artificial intelligence have made it possible to translate human-language prompts to functional code, raising questions about whether these technologies can aid (or replace) life scientists’ efforts to write code. Using 184 programming exercises from an introductory-bioinformatics course, we evaluated the extent to which one such tool—OpenAI’s ChatGPT—could successfully complete programming tasks. ChatGPT solved 139 (75.5%) of the exercises on its first attempt. For the remaining exercises, we provided natural-language feedback to the model, prompting it to try different approaches. Within 7 or fewer attempts, ChatGPT solved 179 (97.3%) of the exercises. These findings have implications for life-sciences education and research. Instructors may need to adapt their pedagogical approaches and assessment techniques to account for these new capabilities that are available to the general public. For some programming tasks, researchers may be able to work in collaboration with machine-learning models to produce functional code.

Execution-based Evaluation for Data Science Code Generation Models

Haotian Cui J. Inala Colin B. Clement + 6 lainnya

17 November 2022

Code generation models can benefit data scientists’ productivity by automatically generating code from context and text descriptions. An important measure of the modeling progress is whether a model can generate code that can correctly execute to solve the task. However, due to the lack of an evaluation dataset that directly supports execution-based model evaluation, existing work relies on code surface form similarity metrics (e.g., BLEU, CodeBLEU) for model selection, which can be inaccurate. To remedy this, we introduce ExeDS, an evaluation dataset for execution evaluation for data science code generation tasks. ExeDS contains a set of 534 problems from Jupyter Notebooks, each consisting of code context, task description, reference program, and the desired execution output. With ExeDS, we evaluate the execution performance of five state-of-the-art code generation models that have achieved high surface-form evaluation scores. Our experiments show that models with high surface-form scores do not necessarily perform well on execution metrics, and execution-based metrics can better capture model code generation errors. All the code and data will be released upon acceptance.

Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle to Pass Assessments in Higher Education Programming Courses

M. Sakr Marshall An C. Bogart + 2 lainnya

15 Juni 2023

This paper studies recent developments in large language models’ (LLM) abilities to pass assessments in introductory and intermediate Python programming courses at the postsecondary level. The emergence of ChatGPT resulted in heated debates of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming classes (e.g., cheating). Recent studies show that while the technology performs surprisingly well on diverse sets of assessment instruments employed in typical programming classes the performance is usually not sufficient to pass the courses. The release of GPT-4 largely emphasized notable improvements in the capabilities related to handling assessments originally designed for human test-takers. This study is the necessary analysis in the context of this ongoing transition towards mature generative AI systems. Specifically, we report the performance of GPT-4, comparing it to the previous generations of GPT models, on three Python courses with assessments ranging from simple multiple-choice questions (no code involved) to complex programming projects with code bases distributed into multiple files (599 exercises overall). Additionally, we analyze the assessments that were not handled well by GPT-4 to understand the current limitations of the model, as well as its capabilities to leverage feedback provided by an auto-grader. We found that the GPT models evolved from completely failing the typical programming class’ assessments (the original GPT-3) to confidently passing the courses with no human involvement (GPT-4). While we identified certain limitations in GPT-4’s handling of MCQs and coding exercises, the rate of improvement across the recent generations of GPT models strongly suggests their potential to handle almost any type of assessment widely used in higher education programming courses. These findings could be leveraged by educators and institutions to adapt the design of programming assessments as well as to fuel the necessary discussions into how programming classes should be updated to reflect the recent technological developments. This study provides evidence that programming instructors need to prepare for a world in which there is an easy-to-use widely accessible technology that can be utilized by learners to collect passing scores, with no effort whatsoever, on what today counts as viable programming knowledge and skills assessments.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.