The Elephant in the Room: Analyzing the Presence of Big Tech in Natural Language Processing Research
Abstrak
Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence in the NLP community over time. Using a corpus with comprehensive metadata of 78,187 NLP publications and 701 resumes of NLP publication authors, we explore the industry presence in the field since the early 90s. We find that industry presence among NLP authors has been steady before a steep increase over the past five years (180% growth from 2017 to 2022). A few companies account for most of the publications and provide funding to academic researchers through grants and internships. Our study shows that the presence and impact of the industry on natural language processing research are significant and fast-growing. This work calls for increased transparency of industry influence in the field.
Artikel Ilmiah Terkait
Jan Philip Wahle Mohamed Abdalla Saif Mohammad + 2 lainnya
23 Oktober 2023
Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular -- citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP's urgent need to reflect on its engagement with various fields.
Saif M. Mohammad
31 Mei 2020
As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.
Jonathan K. Kummerfeld Nihar B. Shah Aur'elie N'ev'eol + 21 lainnya
10 Mei 2024
The number of scientific articles produced every year is growing rapidly. Providing quality control over them is crucial for scientists and, ultimately, for the public good. In modern science, this process is largely delegated to peer review -- a distributed procedure in which each submission is evaluated by several independent experts in the field. Peer review is widely used, yet it is hard, time-consuming, and prone to error. Since the artifacts involved in peer review -- manuscripts, reviews, discussions -- are largely text-based, Natural Language Processing has great potential to improve reviewing. As the emergence of large language models (LLMs) has enabled NLP assistance for many new tasks, the discussion on machine-assisted peer review is picking up the pace. Yet, where exactly is help needed, where can NLP help, and where should it stand aside? The goal of our paper is to provide a foundation for the future efforts in NLP for peer-reviewing assistance. We discuss peer review as a general process, exemplified by reviewing at AI conferences. We detail each step of the process from manuscript submission to camera-ready revision, and discuss the associated challenges and opportunities for NLP assistance, illustrated by existing work. We then turn to the big challenges in NLP for peer review as a whole, including data acquisition and licensing, operationalization and experimentation, and ethical issues. To help consolidate community efforts, we create a companion repository that aggregates key datasets pertaining to peer review. Finally, we issue a detailed call for action for the scientific community, NLP and AI researchers, policymakers, and funding bodies to help bring the research in NLP for peer review forward. We hope that our work will help set the agenda for research in machine-assisted scientific quality control in the age of AI, within the NLP community and beyond.
Tobias Vente Alan Said Lukas Wegmeth + 1 lainnya
15 Agustus 2024
As global warming soars, the need to assess the environmental impact of research is becoming increasingly urgent. Despite this, few recommender systems research papers address their environmental impact. In this study, we estimate the environmental impact of recommender systems research by reproducing typical experimental pipelines. Our analysis spans 79 full papers from the 2013 and 2023 ACM RecSys conferences, comparing traditional"good old-fashioned AI"algorithms with modern deep learning algorithms. We designed and reproduced representative experimental pipelines for both years, measuring energy consumption with a hardware energy meter and converting it to CO2 equivalents. Our results show that papers using deep learning algorithms emit approximately 42 times more CO2 equivalents than papers using traditional methods. On average, a single deep learning-based paper generates 3,297 kilograms of CO2 equivalents - more than the carbon emissions of one person flying from New York City to Melbourne or the amount of CO2 one tree sequesters over 300 years.
C. Curino Bojan Karlas Markus Weimer + 10 lainnya
29 Juli 2022
The recent success of machine learning (ML) has led to an explosive growth of systems and applications built by an ever-growing community of system builders and data science (DS) practitioners. This quickly shifting panorama, however, is challenging for system builders and practitioners alike to follow. In this paper, we set out to capture this panorama through a wide-angle lens, performing the largest analysis of DS projects to date, focusing on questions that can advance our understanding of the field and determine investments. Specifically, we download and analyze (a) over 8M notebooks publicly available on GITHUB and (b) over 2M enterprise ML pipelines developed within Microsoft. Our analysis includes coarse-grained statistical characterizations, finegrained analysis of libraries and pipelines, and comparative studies across datasets and time. We report a large number of measurements for our readers to interpret and draw actionable conclusions on (a) what system builders should focus on to better serve practitioners and (b) what technologies should practitioners rely on.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.