A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems
Abstrak
Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
Artikel Ilmiah Terkait
Muhammad Mustaqim S. Qazi Farah Sabir + 2 lainnya
28 Januari 2020
The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing seamless connectivity between heterogeneous networks (HetNets). The eventual aim of IoT is to introduce the plug and play technology providing the end-user, ease of operation, remotely access control and configurability. This paper presents the IoT technology from a bird’s eye view covering its statistical/architectural trends, use cases, challenges and future prospects. The paper also presents a detailed and extensive overview of the emerging 5G-IoT scenario. Fifth Generation (5G) cellular networks provide key enabling technologies for ubiquitous deployment of the IoT technology. These include carrier aggregation, multiple-input multiple-output (MIMO), massive-MIMO (M-MIMO), coordinated multipoint processing (CoMP), device-to-device (D2D) communications, centralized radio access network (CRAN), software-defined wireless sensor networking (SD-WSN), network function virtualization (NFV) and cognitive radios (CRs). This paper presents an exhaustive review for these key enabling technologies and also discusses the new emerging use cases of 5G-IoT driven by the advances in artificial intelligence, machine and deep learning, ongoing 5G initiatives, quality of service (QoS) requirements in 5G and its standardization issues. Finally, the paper discusses challenges in the implementation of 5G-IoT due to high data-rates requiring both cloud-based platforms and IoT devices based edge computing.
P. Pathirana D. Niyato Jun Li + 5 lainnya
11 Agustus 2021
The sixth-generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) toward a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space–air–ground–underwater communications, Terahertz communications, massive ultrareliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely, healthcare IoTs, Vehicular IoTs and Autonomous Driving, Unmanned Aerial Vehicles, Satellite IoTs, and Industrial IoTs. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.
A. Kurien A. Abu-Mahfouz Emmanuel U. Ogbodo
1 Agustus 2022
Addressing the recent trend of the massive demand for resources and ubiquitous use for all citizens has led to the conceptualization of technologies such as the Internet of Things (IoT) and smart cities. Ubiquitous IoT connectivity can be achieved to serve both urban and underserved remote areas such as rural communities by deploying 5G mobile networks with Low Power Wide Area Network (LPWAN). The current architectures will not offer flexible connectivity to many IoT applications due to high service demand, data exchange, emerging technologies, and security challenges. Hence, this paper explores various architectures that consider a hybrid 5G-LPWAN-IoT and Smart Cities. This includes security challenges as well as endogenous security and solutions in 5G and LPWAN-IoT. The slicing of virtual networks using software-defined network (SDN)/network function virtualization (NFV) based on the different quality of service (QoS) to satisfy different services and quality of experience (QoE) is presented. Also, a strategy that considers the implementation of 5G jointly with Weightless-N (TVWS) technologies to reduce the cell edge interference is considered. Discussions on the need for ubiquity connectivity leveraging 5G and LPWAN-IoT are presented. In addition, future research directions are presented, including a unified 5G network and LPWAN-IoT architecture that will holistically support integration with emerging technologies and endogenous security for improved/secured smart cities and remote areas IoT applications. Finally, the use of LPWAN jointly with low earth orbit (LEO) satellites for ubiquitous IoT connectivity is advocated in this paper.
A. Alphones Helin Yang Chen Chen + 1 lainnya
8 April 2020
With the widespread deployment of Internet of Things (IoT), more and more devices are involved in wireless networks, and the fifth generation (5G) network requires to support the massive connectivity and diverse services for the huge number of IoT devices. Visible light communications (VLC) and visible light positioning (VLP) are two promising supplementary technologies to assist 5G networks to support the massive connectivity, high reliability, high data rate, high positioning accuracy, low latency, low power consumption and improved security of IoT. Hence, this article presents a multi-layer network architecture by integrating VLC and VLP within 5G networks, in order to support the above mentioned diverse requirements of IoT devices. In the multi-layer network, the macrocell and picocell layers support better coverage and reliability via the radio frequency (RF) spectrum, while the optical attocell layer provides the high-speed transmission and high-accuracy positioning services operating at the visible light spectrum. We then briefly describe some key technologies for the performance improvement of the multi-layer network, including energy harvesting, modulation and multiple access schemes. An exemplary case study and simulation analysis are provided to demonstrate the advantage and significance of the presented multi-layer network for IoT. Finally, we point out some future research directions.
Siyu Chen M. Peng Yaqiong Liu + 2 lainnya
23 Juni 2020
To satisfy the increasing demand of mobile data traffic and meet the stringent requirements of the emerging Internet-of-Things (IoT) applications such as smart city, healthcare, and augmented/virtual reality (AR/VR), the fifth-generation (5G) enabling technologies are proposed and utilized in networks. As an emerging key technology of 5G and a key enabler of IoT, multiaccess edge computing (MEC), which integrates telecommunication and IT services, offers cloud computing capabilities at the edge of the radio access network (RAN). By providing computational and storage resources at the edge, MEC can reduce latency for end users. Hence, this article investigates MEC for 5G and IoT comprehensively. It analyzes the main features of MEC in the context of 5G and IoT and presents several fundamental key technologies which enable MEC to be applied in 5G and IoT, such as cloud computing, software-defined networking/network function virtualization, information-centric networks, virtual machine (VM) and containers, smart devices, network slicing, and computation offloading. In addition, this article provides an overview of the role of MEC in 5G and IoT, bringing light into the different MEC-enabled 5G and IoT applications as well as the promising future directions of integrating MEC with 5G and IoT. Moreover, this article further elaborates research challenges and open issues of MEC for 5G and IoT. Last but not least, we propose a use case that utilizes MEC to achieve edge intelligence in IoT scenarios.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
9 sitasiA Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security
A. Kurien A. Abu-Mahfouz + 1 lainnya
1 Agustus 2022
Addressing the recent trend of the massive demand for resources and ubiquitous use for all citizens has led to the conceptualization of technologies such as the Internet of Things (IoT) and smart cities. Ubiquitous IoT connectivity can be achieved to serve both urban and underserved remote areas such as rural communities by deploying 5G mobile networks with Low Power Wide Area Network (LPWAN). The current architectures will not offer flexible connectivity to many IoT applications due to high service demand, data exchange, emerging technologies, and security challenges. Hence, this paper explores various architectures that consider a hybrid 5G-LPWAN-IoT and Smart Cities. This includes security challenges as well as endogenous security and solutions in 5G and LPWAN-IoT. The slicing of virtual networks using software-defined network (SDN)/network function virtualization (NFV) based on the different quality of service (QoS) to satisfy different services and quality of experience (QoE) is presented. Also, a strategy that considers the implementation of 5G jointly with Weightless-N (TVWS) technologies to reduce the cell edge interference is considered. Discussions on the need for ubiquity connectivity leveraging 5G and LPWAN-IoT are presented. In addition, future research directions are presented, including a unified 5G network and LPWAN-IoT architecture that will holistically support integration with emerging technologies and endogenous security for improved/secured smart cities and remote areas IoT applications. Finally, the use of LPWAN jointly with low earth orbit (LEO) satellites for ubiquitous IoT connectivity is advocated in this paper.
The Hitchhiker's Guide to Fused Twins: A Review of Access to Digital Twins In Situ in Smart Cities
R. Sumner Leonel Aguilar + 6 lainnya
15 Februari 2022
Smart Cities already surround us, and yet they are still incomprehensibly far from directly impacting everyday life. While current Smart Cities are often inaccessible, the experience of everyday citizens may be enhanced with a combination of the emerging technologies Digital Twins (DTs) and Situated Analytics. DTs represent their Physical Twin (PT) in the real world via models, simulations, (remotely) sensed data, context awareness, and interactions. However, interaction requires appropriate interfaces to address the complexity of the city. Ultimately, leveraging the potential of Smart Cities requires going beyond assembling the DT to be comprehensive and accessible. Situated Analytics allows for the anchoring of city information in its spatial context. We advance the concept of embedding the DT into the PT through Situated Analytics to form Fused Twins (FTs). This fusion allows access to data in the location that it is generated in in an embodied context that can make the data more understandable. Prototypes of FTs are rapidly emerging from different domains, but Smart Cities represent the context with the most potential for FTs in the future. This paper reviews DTs, Situated Analytics, and Smart Cities as the foundations of FTs. Regarding DTs, we define five components (physical, data, analytical, virtual, and Connection Environments) that we relate to several cognates (i.e., similar but different terms) from existing literature. Regarding Situated Analytics, we review the effects of user embodiment on cognition and cognitive load. Finally, we classify existing partial examples of FTs from the literature and address their construction from Augmented Reality, Geographic Information Systems, Building/City Information Models, and DTs and provide an overview of future directions.
Machine Learning in Wireless Sensor Networks for Smart Cities: A Survey
A. Haque F. Blaabjerg + 1 lainnya
23 April 2021
Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications.