DOI: 10.18653/v1/2020.acl-demos.27
Terbit pada 31 Mei 2020 Pada Annual Meeting of the Association for Computational Linguistics

NLP Scholar: An Interactive Visual Explorer for Natural Language Processing Literature

Saif M. Mohammad

Abstrak

As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.

Artikel Ilmiah Terkait

We are Who We Cite: Bridges of Influence Between Natural Language Processing and Other Academic Fields

Jan Philip Wahle Mohamed Abdalla Saif Mohammad + 2 lainnya

23 Oktober 2023

Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular -- citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP's urgent need to reflect on its engagement with various fields.

Towards Natural Language Interfaces for Data Visualization: A Survey

Xiongshuai Zhang Zhiwei Tai Enya Shen + 5 lainnya

8 September 2021

Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than having to worry about how to operate visualization tools on the interface. In the past two decades, leveraging advanced natural language processing technologies, numerous V-NLI systems have been developed in academic research and commercial software, especially in recent years. In this article, we conduct a comprehensive review of the existing V-NLIs. In order to classify each article, we develop categorical dimensions based on a classic information visualization pipeline with the extension of a V-NLI layer. The following seven stages are used: query interpretation, data transformation, visual mapping, view transformation, human interaction, dialogue management, and presentation. Finally, we also shed light on several promising directions for future work in the V-NLI community.

The Elephant in the Room: Analyzing the Presence of Big Tech in Natural Language Processing Research

Saif M. Mohammad Jan Philip Wahle Aur'elie N'ev'eol + 4 lainnya

4 Mei 2023

Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence in the NLP community over time. Using a corpus with comprehensive metadata of 78,187 NLP publications and 701 resumes of NLP publication authors, we explore the industry presence in the field since the early 90s. We find that industry presence among NLP authors has been steady before a steep increase over the past five years (180% growth from 2017 to 2022). A few companies account for most of the publications and provide funding to academic researchers through grants and internships. Our study shows that the presence and impact of the industry on natural language processing research are significant and fast-growing. This work calls for increased transparency of industry influence in the field.

NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from Natural Language Queries

J. Stasko Arpit Narechania Arjun Srinivasan

24 Agustus 2020

Natural language interfaces (NLls) have shown great promise for visual data analysis, allowing people to flexibly specify and interact with visualizations. However, developing visualization NLIs remains a challenging task, requiring low-level implementation of natural language processing (NLP) techniques as well as knowledge of visual analytic tasks and visualization design. We present NL4DV, a toolkit for natural language-driven data visualization. NL4DV is a Python package that takes as input a tabular dataset and a natural language query about that dataset. In response, the toolkit returns an analytic specification modeled as a JSON object containing data attributes, analytic tasks, and a list of Vega-Lite specifications relevant to the input query. In doing so, NL4DV aids visualization developers who may not have a background in NLP, enabling them to create new visualization NLIs or incorporate natural language input within their existing systems. We demonstrate NL4DV's usage and capabilities through four examples: 1) rendering visualizations using natural language in a Jupyter notebook, 2) developing a NLI to specify and edit Vega-Lite charts, 3) recreating data ambiguity widgets from the DataTone system, and 4) incorporating speech input to create a multimodal visualization system.

Exploring the Landscape of Natural Language Processing Research

Tim Schopf F. Matthes Karim Arabi

20 Juli 2023

As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent. Contributing to closing this gap, we have systematically classified and analyzed research papers in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields of study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.