The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques
Abstrak
ABSTRACT Nowadays, natural language processing (NLP) is one of the most popular areas of, broadly understood, artificial intelligence. Therefore, every day, new research contributions are posted, for instance, to the arXiv repository. Hence, it is rather difficult to capture the current “state of the field” and thus, to enter it. This brought the id-art NLP techniques to analyse the NLP-focused literature. As a result, (1) meta-level knowledge, concerning the current state of NLP has been captured, and (2) a guide to use of basic NLP tools is provided. It should be noted that all the tools and the dataset described in this contribution are publicly available. Furthermore, the originality of this review lies in its full automation. This allows easy reproducibility and continuation and updating of this research in the future as new researches emerge in the field of NLP.
Artikel Ilmiah Terkait
Tim Schopf F. Matthes Karim Arabi
20 Juli 2023
As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent. Contributing to closing this gap, we have systematically classified and analyzed research papers in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields of study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work.
Lun-Wei Ku Cheng-te Li
30 April 2023
SocialNLP is an inter-disciplinary area of natural language processing (NLP) and social computing. SocialNLP has three directions: (1) addressing issues in social computing using NLP techniques; (2) solving NLP problems using information from social networks or social media; and (3) handling new problems related to both social computing and natural language processing. The 11th SocialNLP workshop is held at TheWebConf 2023. We accepted nine papers with acceptance ratio 56%. We sincerely thank to all authors, program committee members, and workshop chairs, for their great contributions and help in this edition of SocialNLP workshop.
Keletso J. Letsholo Muideen A. Ajagbe Waad Alhoshan + 4 lainnya
2 April 2020
Natural language processing supported requirements engineering is an area of research and development that seeks to apply NLP techniques, tools and resources to a variety of requirements documents or artifacts to support a range of linguistic analysis tasks performed at various RE phases. Such tasks include detecting language issues, identifying key domain concepts and establishing traceability links between requirements. This article surveys the landscape of NLP4RE research to understand the state of the art and identify open problems. The systematic mapping study approach is used to conduct this survey, which identified 404 relevant primary studies and reviewed them according to five research questions, cutting across five aspects of NLP4RE research, concerning the state of the literature, the state of empirical research, the research focus, the state of the practice, and the NLP technologies used. Results: 1) NLP4RE is an active and thriving research area in RE that has amassed a large number of publications and attracted widespread attention from diverse communities; 2) most NLP4RE studies are solution proposals having only been evaluated using a laboratory experiment or an example application; 3) most studies have focused on the analysis phase, with detection as their central linguistic analysis task and requirements specification as their commonly processed document type; 4) 130 new tools have been proposed to support a range of linguistic analysis tasks, but there is little evidence of adoption in the long term, although some industrial applications have been published; 5) 140 NLP techniques, 66 NLP tools and 25 NLP resources are extracted from the selected studies.
Chee‐Wee Tan Hefu Liu Zhao Cai + 2 lainnya
2 April 2020
Natural language processing (NLP) is gaining momentum in management research for its ability to automatically analyze and comprehend human language. Yet, despite its extensive application in manage...
J. Lehman C. Ros'e Denis Newman-Griffis + 1 lainnya
16 April 2021
Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often assumed to emerge naturally, resulting in many innovations going unapplied and many important questions left unstudied. We describe a new paradigm of Translational NLP, which aims to structure and facilitate the processes by which basic and applied NLP research inform one another. Translational NLP thus presents a third research paradigm, focused on understanding the challenges posed by application needs and how these challenges can drive innovation in basic science and technology design. We show that many significant advances in NLP research have emerged from the intersection of basic principles with application needs, and present a conceptual framework outlining the stakeholders and key questions in translational research. Our framework provides a roadmap for developing Translational NLP as a dedicated research area, and identifies general translational principles to facilitate exchange between basic and applied research.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.