DOI: 10.1109/TITS.2022.3179391
Terbit pada 1 Januari 2023 Pada IEEE transactions on intelligent transportation systems (Print)

Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning

Jingyu Chen Dawei Jin Mengran Xia

Abstrak

This study proposes a short-term traffic flow prediction model that combines community detection-based federated learning with a graph convolutional network (GCN) to alleviate the time-consuming training, higher communication costs, and data privacy risks of global GCNs as the amount of data increases. The federated community GCN (FCGCN) can achieve timely, accurate, and safe traffic state predictions in the era of big traffic data, which is critical for the efficient operation of intelligent transportation systems. The FCGCN prediction process has four steps: dividing the local subnetwork with community detection, local training based on the global parameters, uploading the local model parameters, and constructing a global model prediction based on the aggregated parameters. Numerical results on the PeMS04 and PeMS08 datasets show that the FCGCN outperforms four benchmark models, namely, the long short-term memory (LSTM), convolutional neural network (CNN), ChebNet, and graph attention network (GAT) models. The FCGCN prediction is closer to the real value, with nearly the same performance as the global model at a lower time cost, thus achieving accurate and secure short-term traffic flow predictions with three parameters: flow, speed, and occupancy.

Artikel Ilmiah Terkait

A Novel Spatial-Temporal Multi-Scale Alignment Graph Neural Network Security Model for Vehicles Prediction

W. Liang Chunyan Diao Dafang Zhang + 3 lainnya

1 Januari 2023

Traffic flow forecasting is indispensable in today’s society and regarded as a key problem for Intelligent Transportation Systems (ITS), as emergency delays in vehicles can cause serious traffic security accidents. However, the complex dynamic spatial-temporal dependency and correlation between different locations on the road make it a challenging task for security in transportation. To date, most existing forecasting frames make use of graph convolution to model the dynamic spatial-temporal correlation of vehicle transportation data, ignoring semantic similarity between nodes and thus, resulting in accuracy degradation. In addition, traffic data does not strictly follow periodicity and hard to be captured. To solve the aforementioned challenging issues, we propose in this article CRFAST-GCN, a multi-branch spatial-temporal attention graph convolution network. First, we capture the multi-scale (e.g., hour, day, and week) long- short-term dependencies through three identical branches, then introduce conditional random field (CRF) enhanced graph convolution network to capture the semantic similarity globally, so then we exploit the attention mechanism to captures the periodicity. For model evaluation using two real-world datasets, performance analysis shows that the proposed CRFAST-GCN successfully handles the complex spatial-temporal dynamics effectively and achieves improvement over the baselines at 50% (maximum), outperforming other advanced existing methods.

Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting

Mengzhang Li Zhanxing Zhu

15 Desember 2020

Spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads. Existing frameworks usually utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations. However, limited representations of given spatial graph structure with incomplete adjacent connections may restrict effective spatial-temporal dependencies learning of those models. Furthermore, existing methods were out at elbows when solving complicated spatial-temporal data: they usually utilize separate modules for spatial and temporal correlations, or they only use independent components capturing localized or global heterogeneous dependencies. To overcome those limitations, our paper proposes a novel Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting. First, a data-driven method of generating “temporal graph” is proposed to compensate several genuine correlations that spatial graph may not reflect. STFGNN could effectively learn hidden spatial-temporal dependencies by a novel fusion operation of various spatial and temporal graphs, treated for different time periods in parallel. Meanwhile, by integrating this fusion graph module and a novel gated convolution module into a unified layer parallelly, STFGNN could handle long sequences by learning more spatial-temporal dependencies with layers stacked. Experimental results on several public traffic datasets demonstrate that our method achieves state-of-the-art performance consistently than other baselines.

Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

Zhenya Huang Leyan Deng Enhong Chen + 1 lainnya

4 Januari 2022

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens’ quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning

Mingfang Huang Jianhu Zheng

2020

Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long short-term memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management.

Leveraging Neo4j and deep learning for traffic congestion simulation & optimization

S. Yusuf R. Souissi Arshad Ali Khan + 1 lainnya

1 April 2023

Traffic congestion has been a major challenge in many urban road networks. Extensive research studies have been conducted to highlight traffic-related congestion and address the issue using data-driven approaches. Currently, most traffic congestion analyses are done using simulation software that offers limited insight due to the limitations in the tools and utilities being used to render various traffic congestion scenarios. All that impacts the formulation of custom business problems which vary from place to place and country to country. By exploiting the power of the knowledge graph, we model a traffic congestion problem into the Neo4j graph and then use the load balancing, optimization algorithm to identify congestion-free road networks. We also show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads. We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion. Our results show that graph-based traffic simulation, supplemented by AI ML-based traffic prediction can be more effective in estimating the congestion level in a road network.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

1 sitasi

Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

Long Shi Jian Weng + 6 lainnya

20 September 2023

Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions.