Towards View Management in Graph Databases
Abstrak
Views are widely used in relational databases to facilitate query writing, give individualized abstractions to different user groups, and improve query execution time with materialization techniques. This paper explores how views could be defined and used in graph database systems (GDBS) with a similar purpose to what can be found in relational systems. We perform our analysis using Neo4j and its query language Cypher which has many of the features typically found in graph query languages, aiming to pave the way for integrating view management into a wider range of GDBS.
Artikel Ilmiah Terkait
Shipeng Qi Kaiwei Li Xingdi Wei + 5 lainnya
28 November 2024
Graph databases are getting more and more attention in the highly interconnected data domain, and the demand for efficient querying of big data is increasing. We noticed that there are duplicate patterns in graph database queries, and the results of these patterns can be stored as materialized views first, which can speed up the query rate. So we propose materialized views on property graphs, including three parts: view creation, view maintenance, and query optimization using views, and we propose for the first time an efficient templated view maintenance method for containing variable-length edges, which can be applied to multiple graph databases. In order to verify the effect of materialized views, we prototype on TuGraph and experiment on both TuGraph and Neo4j. The experiment results show that our query optimization on read statements is much higher than the additional view maintenance cost brought by write statements. The speedup ratio of the whole workload reaches up to 28.71x, and the speedup ratio of a single query reaches up to nearly 100x.
M. Arenas Claudio Gutiérrez Juan Sequeda
9 Juni 2021
Graphs have become the best way we know of representing knowledge. The computing community has investigated and developed the support for managing graphs by means of digital technology. Graph databases and knowledge graphs surface as the most successful solutions to this program. This tutorial will provide a conceptual map of the data management tasks underlying these developments, paying particular attention to data models and query languages for graphs
Michael J. Carey Glenn Galvizo
13 Mei 2024
The increasing prevalence of large graph data has produced a variety of research and applications tailored toward graph data management. Users aiming to perform graph analytics will typically start by importing existing data into a separate graph-purposed storage engine. The cost of maintaining a separate system (e.g., the data copy, the associated queries, etc …) just for graph analytics may be prohibitive for users with Big Data. In this paper, we introduce Graphix and show how it enables property graph views of existing document data in AsterixDB, a Big Data management system boasting a partitioned-parallel query execution engine. We explain a) the graph view user model of Graphix, b) $\text{gSQL}^{++}$, a novel query language extension for synergistic document-based navigational pattern matching, and c) how edge hops are evaluated in a parallel fashion. We then compare queries authored in $\text{gSQL}^{++}$ against versions in other leading query languages. Finally, we evaluate our approach against a leading native graph database, Neo4j, and show that Graphix is appropriate for operational and analytical workloads, especially at scale.
Veronica Santos Bruno Cuconato
24 Desember 2024
Graphs are the most suitable structures for modeling objects and interactions in applications where component inter-connectivity is a key feature. There has been increased interest in graphs to represent domains such as social networks, web site link structures, and biology. Graph stores recently rose to prominence along the NoSQL movement. In this work we will focus on NOSQL graph databases, describing their peculiarities that sets them apart from other data storage and management solutions, and how they differ among themselves. We will also analyze in-depth two different graph database management systems - AllegroGraph and Neo4j that uses the most popular graph models used by NoSQL stores in practice: the resource description framework (RDF) and the labeled property graph (LPG), respectively.
Yuanyuan Tian
23 November 2022
Rapidly growing social networks and other graph data have created a high demand for graph technologies in the market. A plethora of graph databases, systems, and solutions have emerged, as a result. On the other hand, graph has long been a well studied area in the database research community. Despite the numerous surveys on various graph research topics, there is a lack of survey on graph technologies from an industry perspective. The purpose of this paper is to provide the research community with an industrial perspective on the graph database landscape, so that graph researcher can better understand the industry trend and the challenges that the industry is facing, and work on solutions to help address these problems.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.