DOI: 10.1109/ACCESS.2021.3115263
Terbit pada 2021 Pada IEEE Access

Cognitive and Affective Brain–Computer Interfaces for Improving Learning Strategies and Enhancing Student Capabilities: A Systematic Literature Review

C. Guger Sofia Ouhbi Abdelkader Nasreddine Belkacem + 1 penulis

Abstrak

Brain–computer interface (BCI) technology has the potential to positively contribute to the educational learning environment, which faces many challenges and shortcomings. Cognitive and affective BCIs can offer a deep understanding of brain mechanisms, which may improve learning strategies and increase brain-based skills. They can offer a better empirical foundation for teaching–learning methodologies, including adjusting learning content based on brain workload, measuring student interest of a topic, or even helping students focus on specific tasks. The latest findings from emerging BCI technology, neuroscience, cognitive sciences, and psychology could be used in learning and teaching strategies to improve student abilities in education. This study investigates and analyzes the research on BCI patterns and its implementation for enhancing cognitive capabilities of students. The results showed that there is insufficient literature on BCI that addresses students with disabilities in the learning process. Further, our analysis revealed a bias toward the significance of cognitive process factors compared with other influential factors, such as the learning environment and emotions that influence learning. Finally, we concluded that BCI technology could improve students’ learning and cognitive skills—when consistently associated with the different pedagogical teaching–learning strategies—for better academic achievement.

Artikel Ilmiah Terkait

Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review

Sofia Ouhbi Abdelkader Nasreddine Belkacem N. Jamil + 1 lainnya

1 Juli 2021

Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain–computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.

A review of user training methods in brain computer interfaces based on mental tasks

B. N'Kaoua C. Jeunet J. Mladenović + 4 lainnya

12 November 2020

Mental-tasks based brain–computer interfaces (MT-BCIs) allow their users to interact with an external device solely by using brain signals produced through mental tasks. While MT-BCIs are promising for many applications, they are still barely used outside laboratories due to their lack of reliability. MT-BCIs require their users to develop the ability to self-regulate specific brain signals. However, the human learning process to control a BCI is still relatively poorly understood and how to optimally train this ability is currently under investigation. Despite their promises and achievements, traditional training programs have been shown to be sub-optimal and could be further improved. In order to optimize user training and improve BCI performance, human factors should be taken into account. An interdisciplinary approach should be adopted to provide learners with appropriate and/or adaptive training. In this article, we provide an overview of existing methods for MT-BCI user training—notably in terms of environment, instructions, feedback and exercises. We present a categorization and taxonomy of these training approaches, provide guidelines on how to choose the best methods and identify open challenges and perspectives to further improve MT-BCI user training.

Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces

Nikki Leeuwis M. Alimardani Alissa Paas

6 April 2021

Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users’ mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.

Factors influencing students' adoption intention of brain-computer interfaces in a game-learning context

Chung-Lun Wei Yu-Min Wang Meng-Wei Wang

10 Juni 2022

PurposeA research framework that explains adoption intention in students with regard to brain–computer interface (BCI) games in the learning context was proposed and empirically examined.Design/methodology/approachIn this study, an approach integrating the decomposed theory of planned behavior, perceived playfulness, risk and the task–technology fit (TTF) concept was used to assess data collected using a post-experiment questionnaire from a student sample in Taiwan. The research model was tested using the partial least-squares structural equation modeling (PLS-SEM) technique.FindingsAttitude, subjective norms and TTF were shown to impact intention to play the BCI game significantly, while perceived behavioral control did not show a significant impact. The influence of superiors and peers was found to positively predict subjective norms. With the exception of perceived ease of use, all of the proposed antecedents were found to impact attitude toward BCI games. Technology facilitating conditions and BCI technology characteristics were shown to positively determine perceived behavior control and TTF, respectively. However, the other proposed factors did not significantly influence the latter two dependents.Originality/valueThis research contributes to the nascent literature on BCI games in the context of learning by highlighting the influence of belief-related psychological factors on user acceptance of BCI games. Moreover, this study highlights the important, respective influences of perceived playfulness, risk and TTF on users' perceptions of a game, body monitoring and technology implementation, each of which is known to influence willingness to play.

Summary of over Fifty Years with Brain-Computer Interfaces—A Review

R. Martínek Natalia Browarska Aleksandra Kawala-Sterniuk + 5 lainnya

1 Januari 2021

Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention people who were pioneers in this area as well as we highlight all the technological and methodological advances that have transformed something available and understandable by a very few into something that has a potential to be a breathtaking change for so many. Aiming to fully understand how the human brain works is a very ambitious goal and it will surely take time to succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow impaired people to regain control on their lives and significantly improve its quality. The more is discovered in this domain, the more benefit for all of us this can potentially bring.

Daftar Referensi

1 referensi

Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review

Sofia Ouhbi Abdelkader Nasreddine Belkacem + 2 lainnya

1 Juli 2021

Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain–computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.

Artikel yang Mensitasi

1 sitasi

Brain Neuroplasticity Leveraging Virtual Reality and Brain–Computer Interface Technologies

Athanasios Drigas Angeliki Sideraki

1 September 2024

This study explores neuroplasticity through the use of virtual reality (VR) and brain–computer interfaces (BCIs). Neuroplasticity is the brain’s ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.