AI assisted Malware Analysis: A Course for Next Generation Cybersecurity Workforce
Abstrak
The use of Artificial Intelligence (AI) and Machine Learning (ML) to solve cybersecurity problems has been gaining traction within industry and academia, in part as a response to widespread malware attacks on critical systems, such as cloud infrastructures, government offices or hospitals, and the vast amounts of data they generate. AI- and ML-assisted cybersecurity offers data-driven automation that could enable security systems to identify and respond to cyber threats in real time. However, there is currently a shortfall of professionals trained in AI and ML for cybersecurity. Here we address the shortfall by developing lab-intensive modules that enable undergraduate and graduate students to gain fundamental and advanced knowledge in applying AI and ML techniques to real-world datasets to learn about Cyber Threat Intelligence (CTI), malware analysis, and classification, among other important topics in cybersecurity. Here we describe six self-contained and adaptive modules in "AI-assisted Malware Analysis." Topics include: (1) CTI and malware attack stages, (2) malware knowledge representation and CTI sharing, (3) malware data collection and feature identification, (4) AI-assisted malware detection, (5) malware classification and attribution, and (6) advanced malware research topics and case studies such as adversarial learning and Advanced Persistent Threat (APT) detection.
Artikel Ilmiah Terkait
Giovanni Apruzzese Fabio Di Franco Wissam Mallouli + 4 lainnya
20 Juni 2022
Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a significant discrepancy between research and practice. Such a discrepancy has its root cause in the current state of the art, which does not allow us to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless its pros and cons are understood by a broad audience. This article is the first attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain—to any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrinsic problems affecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute to future developments of ML in cybersecurity, which is essential for further progress in this field. Our contributions are complemented with two real case studies describing industrial applications of ML as defense against cyber-threats.
Maanak Gupta Mahmoud Abdelsalam Sudip Mittal
28 April 2021
This tutorial provides a review of the state-of-the-art research and the applications of Artificial Intelligence and Machine Learning for malware analysis. We will provide an overview, background and results with respect to the three main malware analysis approaches: static malware analysis, dynamic malware analysis and online malware analysis. Further, we will provide a simplified hands-on tutorial of applying ML algorithm for dynamic malware analysis in cloud IaaS.
M. Chowdhury Nafiz Rifat Jayden F Connolly + 3 lainnya
10 Juli 2022
Machine learning is of rising importance in cybersecurity. The primary objective of applying machine learning in cybersecurity is to make the process of malware detection more actionable, scalable and effective than traditional approaches, which require human intervention. The cybersecurity domain involves machine learning challenges that require efficient methodical and theoretical handling. Several machine learning and statistical methods, such as deep learning, support vector machines and Bayesian classification, among others, have proven effective in mitigating cyber-attacks. The detection of hidden trends and insights from network data and building of a corresponding data-driven machine learning model to prevent these attacks is vital to design intelligent security systems. In this survey, the focus is on the machine learning techniques that have been implemented on cybersecurity data to make these systems secure. Existing cybersecurity threats and how machine learning techniques have been used to mitigate these threats have been discussed. The shortcomings of these state-of-the-art models and how attack patterns have evolved over the past decade have also been presented. Our goal is to assess how effective these machine learning techniques are against the ever-increasing threat of malware that plagues our online community.
Ibrahim Moussa Marou Amir Djenna A. Bouridane + 1 lainnya
8 Maret 2023
Malware, a lethal weapon of cyber attackers, is becoming increasingly sophisticated, with rapid deployment and self-propagation. In addition, modern malware is one of the most devastating forms of cybercrime, as it can avoid detection, make digital forensics investigation in near real-time impossible, and the impact of advanced evasion strategies can be severe and far-reaching. This makes it necessary to detect it in a timely and autonomous manner for effective analysis. This work proposes a new systematic approach to identifying modern malware using dynamic deep learning-based methods combined with heuristic approaches to classify and detect five modern malware families: adware, Radware, rootkit, SMS malware, and ransomware. Our symmetry investigation in artificial intelligence and cybersecurity analytics will enhance malware detection, analysis, and mitigation abilities to provide resilient cyber systems against cyber threats. We validated our approach using a dataset that specifically contains recent malicious software to demonstrate that the model achieves its goals and responds to real-world requirements in terms of effectiveness and efficiency. The experimental results indicate that the combination of behavior-based deep learning and heuristic-based approaches for malware detection and classification outperforms the use of static deep learning methods.
P. Watters Alex Ng A. Kayes + 3 lainnya
11 Juni 2020
In a computing context, cybersecurity is undergoing massive shifts in technology and its operations in recent days, and data science is driving the change. Extracting security incident patterns or insights from cybersecurity data and building corresponding data-driven model, is the key to make a security system automated and intelligent. To understand and analyze the actual phenomena with data, various scientific methods, machine learning techniques, processes, and systems are used, which is commonly known as data science. In this paper, we focus and briefly discuss on cybersecurity data science, where the data is being gathered from relevant cybersecurity sources, and the analytics complement the latest data-driven patterns for providing more effective security solutions. The concept of cybersecurity data science allows making the computing process more actionable and intelligent as compared to traditional ones in the domain of cybersecurity. We then discuss and summarize a number of associated research issues and future directions. Furthermore, we provide a machine learning based multi-layered framework for the purpose of cybersecurity modeling. Overall, our goal is not only to discuss cybersecurity data science and relevant methods but also to focus the applicability towards data-driven intelligent decision making for protecting the systems from cyber-attacks.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.