DOI: 10.48550/arXiv.2211.11501
Terbit pada 18 November 2022 Pada International Conference on Machine Learning

DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation

Tao Yu Tianyi Zhang Si-yi Wang + 6 penulis

Abstrak

We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.

Artikel Ilmiah Terkait

Execution-based Evaluation for Data Science Code Generation Models

Haotian Cui J. Inala Colin B. Clement + 6 lainnya

17 November 2022

Code generation models can benefit data scientists’ productivity by automatically generating code from context and text descriptions. An important measure of the modeling progress is whether a model can generate code that can correctly execute to solve the task. However, due to the lack of an evaluation dataset that directly supports execution-based model evaluation, existing work relies on code surface form similarity metrics (e.g., BLEU, CodeBLEU) for model selection, which can be inaccurate. To remedy this, we introduce ExeDS, an evaluation dataset for execution evaluation for data science code generation tasks. ExeDS contains a set of 534 problems from Jupyter Notebooks, each consisting of code context, task description, reference program, and the desired execution output. With ExeDS, we evaluate the execution performance of five state-of-the-art code generation models that have achieved high surface-form evaluation scores. Our experiments show that models with high surface-form scores do not necessarily perform well on execution metrics, and execution-based metrics can better capture model code generation errors. All the code and data will be released upon acceptance.

CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation

Neel Sundaresan Alexey Svyatkovskiy Lidong Zhou + 19 lainnya

9 Februari 2021

Benchmark datasets have a significant impact on accelerating research in programming language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster machine learning research for program understanding and generation. CodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison. CodeXGLUE also features three baseline systems, including the BERT-style, GPT-style, and Encoder-Decoder models, to make it easy for researchers to use the platform. The availability of such data and baselines can help the development and validation of new methods that can be applied to various program understanding and generation problems.

Natural Language to Code Generation in Interactive Data Science Notebooks

Wen-Ding Li H. Michalewski A. Rao + 9 lainnya

19 Desember 2022

Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1078 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions. Arcade is publicly available at https://github.com/google-research/arcade-nl2code/.

SOAR: A Synthesis Approach for Data Science API Refactoring

I. Lynce Vasco M. Manquinho Aidan Z. H. Yang + 4 lainnya

12 Februari 2021

With the growth of the open-source data science community, both the number of data science libraries and the number of versions for the same library are increasing rapidly. To match the evolving APIs from those libraries, open-source organizations often have to exert manual effort to refactor the APIs used in the code base. Moreover, due to the abundance of similar open-source libraries, data scientists working on a certain application may have an abundance of libraries to choose, maintain and migrate between. The manual refactoring between APIs is a tedious and error-prone task. Although recent research efforts were made on performing automatic API refactoring between different languages, previous work relies on statistical learning with collected pairwise training data for the API matching and migration. Using large statistical data for refactoring is not ideal because such training data will not be available for a new library or a new version of the same library. We introduce Synthesis for Open-Source API Refactoring (SOAR), a novel technique that requires no training data to achieve API migration and refactoring. SOAR relies only on the documentation that is readily available at the release of the library to learn API representations and mapping between libraries. Using program synthesis, SOAR automatically computes the correct configuration of arguments to the APIs and any glue code required to invoke those APIs. SOAR also uses the interpreter's error messages when running refactored code to generate logical constraints that can be used to prune the search space. Our empirical evaluation shows that SOAR can successfully refactor 80% of our benchmarks corresponding to deep learning models with up to 44 layers with an average run time of 97.23 seconds, and 90% of the data wrangling benchmarks with an average run time of 17.31 seconds.

Training and Evaluating a Jupyter Notebook Data Science Assistant

Neel Sundaresan Guillermo Serrato Shubham Chandel + 1 lainnya

30 Januari 2022

We study the feasibility of a Data Science assistant powered by a sequence-to-sequence transformer by training a new model JuPyT5 on all publicly available Jupyter Notebook GitHub repositories and developing a new metric: Data Science Problems (DSP). DSP is a collection of 1119 problems curated from 306 pedagogical notebooks with 92 dataset dependencies, natural language and Markdown problem descriptions, and assert-based unit tests. These notebooks were designed to test university students' mastery of various Python implementations of Math and Data Science, and we now leverage them to study the ability of JuPyT5 to understand and pass the tests. We analyze the content of DSP, validate its quality, and we find that given 100 sampling attempts JuPyT5 is able to solve 77.5\% of the DSP problems. We further present various ablation and statistical analyses and compare DSP to other recent natural language to code benchmarks.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.