An Enhanced Analysis of Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function
Abstrak
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.
Artikel Ilmiah Terkait
Krishnadas Janardhanan Yuvaraj Natarajan Sameer Alani + 4 lainnya
6 Oktober 2023
This paper examines the use of deep recurrent neural networks to classify traffic patterns in smart cities. We propose a novel approach to traffic pattern classification based on deep recurrent neural networks, which can effectively capture traffic patterns’ dynamic and sequential features. The proposed model combines convolutional and recurrent layers to extract features from traffic pattern data and a SoftMax layer to classify traffic patterns. Experimental results show that the proposed model outperforms existing methods regarding accuracy, precision, recall, and F1 score. Furthermore, we provide an in-depth analysis of the results and discuss the implications of the proposed model for smart cities. The results show that the proposed model can accurately classify traffic patterns in smart cities with a precision of as high as 95%. The proposed model is evaluated on a real-world traffic pattern dataset and compared with existing classification methods.
Mingfang Huang Jianhu Zheng
2020
Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long short-term memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management.
S. Yusuf R. Souissi Arshad Ali Khan + 1 lainnya
1 April 2023
Traffic congestion has been a major challenge in many urban road networks. Extensive research studies have been conducted to highlight traffic-related congestion and address the issue using data-driven approaches. Currently, most traffic congestion analyses are done using simulation software that offers limited insight due to the limitations in the tools and utilities being used to render various traffic congestion scenarios. All that impacts the formulation of custom business problems which vary from place to place and country to country. By exploiting the power of the knowledge graph, we model a traffic congestion problem into the Neo4j graph and then use the load balancing, optimization algorithm to identify congestion-free road networks. We also show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads. We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion. Our results show that graph-based traffic simulation, supplemented by AI ML-based traffic prediction can be more effective in estimating the congestion level in a road network.
Makó Csaba Amir H. Mosavi Mehdi Sookhak + 7 lainnya
2022
The manuscript represents a comeprehensive and systematic literature review on the machine learning methods in the emerging applications of smart city. Application domains include the essential aspect of the smart cities including the energy, healthcare, transportation, security, and pollution. The methodology presents the state-of-the-art, taxonomy, evaluation and model performance. The study concludes that the hybrid models and ensembles are the best performers since they exhibit both high accuracy and not-costly complexity. On the other hand, the deep learning (DL) techniques had higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation power. Moreover, all these advanced ML methods had a slower processing speed than the single methods. Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial neural network (ANN) for accuracy and other metrics. However, since the difference is negligible, it can be concluded that using either of them is appropriate. The study’s findings identify the pros and cons of the methods in each application for future researchers, practitioners, and policy-makers for the right problem within the context of smart cities.
Nitin Goyal A. Rana S. Pani + 5 lainnya
1 April 2022
The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.
Daftar Referensi
2 referensiDisruptive Technologies in Smart Cities: A Survey on Current Trends and Challenges
Laura-Diana Radu
13 September 2020
This paper aims to explore the most important disruptive technologies in the development of the smart city. Every smart city is a dynamic and complex system that attracts an increasing number of people in search of the benefits of urbanisation. According to the United Nations, 68% of the world population will be living in cities by 2050. This creates challenges related to limited resources and infrastructure (energy, water, transportation system, etc.). To solve these problems, new and emerging technologies are created. Internet of Things, big data, blockchain, artificial intelligence, data analytics, and machine and cognitive learning are just a few examples. They generate changes in key sectors such as health, energy, transportation, education, public safety, etc. Based on a comprehensive literature review, we identified the main disruptive technologies in smart cities. Applications that integrate these technologies help cities to be smarter and offer better living conditions and easier access to products and services for residents. Disruptive technologies are generally considered key drivers in smart city progress. This paper presents these disruptive technologies, their applications in smart cities, the most important challenges and critics.
When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review
Makó Csaba Amir H. Mosavi + 8 lainnya
2022
The manuscript represents a comeprehensive and systematic literature review on the machine learning methods in the emerging applications of smart city. Application domains include the essential aspect of the smart cities including the energy, healthcare, transportation, security, and pollution. The methodology presents the state-of-the-art, taxonomy, evaluation and model performance. The study concludes that the hybrid models and ensembles are the best performers since they exhibit both high accuracy and not-costly complexity. On the other hand, the deep learning (DL) techniques had higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation power. Moreover, all these advanced ML methods had a slower processing speed than the single methods. Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial neural network (ANN) for accuracy and other metrics. However, since the difference is negligible, it can be concluded that using either of them is appropriate. The study’s findings identify the pros and cons of the methods in each application for future researchers, practitioners, and policy-makers for the right problem within the context of smart cities.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.