Graph Retrieval-Augmented Generation: A Survey
Abstrak
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field. In order to track recent progress in this field, we set up a repository at \url{https://github.com/pengboci/GraphRAG-Survey}.
Artikel Ilmiah Terkait
Shangyu Wu Lianming Huang Yufei Cui + 8 lainnya
18 Juli 2024
Large language models (LLMs) have demonstrated great success in various fields, benefiting from their huge amount of parameters that store knowledge. However, LLMs still suffer from several key issues, such as hallucination problems, knowledge update issues, and lacking domain-specific expertise. The appearance of retrieval-augmented generation (RAG), which leverages an external knowledge database to augment LLMs, makes up those drawbacks of LLMs. This paper reviews all significant techniques of RAG, especially in the retriever and the retrieval fusions. Besides, tutorial codes are provided for implementing the representative techniques in RAG. This paper further discusses the RAG update, including RAG with/without knowledge update. Then, we introduce RAG evaluation and benchmarking, as well as the application of RAG in representative NLP tasks and industrial scenarios. Finally, this paper discusses RAG's future directions and challenges for promoting this field's development.
Weining Qian Siyuan Wang Yunshi Lan + 4 lainnya
26 Februari 2024
Graph Databases (Graph DB) find extensive application across diverse domains such as finance, social networks, and medicine. Yet, the translation of Natural Language (NL) into the Graph Query Language (GQL), referred to as NL2GQL, poses significant challenges owing to its intricate and specialized nature. Some approaches have sought to utilize Large Language Models (LLMs) to address analogous tasks like text2SQL. Nonetheless, in the realm of NL2GQL tasks tailored to a particular domain, the absence of domain-specific NL-GQL data pairs adds complexity to aligning LLMs with the graph DB. To tackle this challenge, we present a well-defined pipeline. Initially, we utilize ChatGPT to generate NL-GQL data pairs, leveraging the provided graph DB with self-instruction. Subsequently, we employ the generated data to fine-tune LLMs, ensuring alignment between LLMs and the graph DB. Moreover, we find the importance of relevant schema in efficiently generating accurate GQLs. Thus, we introduce a method to extract relevant schema as the input context. We evaluate our method using two carefully constructed datasets derived from graph DBs in the finance and medicine domains, named FinGQL and MediGQL. Experimental results reveal that our approach significantly outperforms a set of baseline methods, with improvements of 5.90 and 6.36 absolute points on EM, and 6.00 and 7.09 absolute points on EX for FinGQL and MediGQL, respectively.
Yucheng Hu Yuxing Lu
30 April 2024
Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
Jon Besga Makbule Gülçin Özsoy Leila Messallem + 1 lainnya
13 Desember 2024
Knowledge graphs use nodes, relationships, and properties to represent arbitrarily complex data. When stored in a graph database, the Cypher query language enables efficient modeling and querying of knowledge graphs. However, using Cypher requires specialized knowledge, which can present a challenge for non-expert users. Our work Text2Cypher aims to bridge this gap by translating natural language queries into Cypher query language and extending the utility of knowledge graphs to non-technical expert users. While large language models (LLMs) can be used for this purpose, they often struggle to capture complex nuances, resulting in incomplete or incorrect outputs. Fine-tuning LLMs on domain-specific datasets has proven to be a more promising approach, but the limited availability of high-quality, publicly available Text2Cypher datasets makes this challenging. In this work, we show how we combined, cleaned and organized several publicly available datasets into a total of 44,387 instances, enabling effective fine-tuning and evaluation. Models fine-tuned on this dataset showed significant performance gains, with improvements in Google-BLEU and Exact Match scores over baseline models, highlighting the importance of high-quality datasets and fine-tuning in improving Text2Cypher performance.
J. Fiaidhi S. Shankar K. Kushal + 1 lainnya
5 Mei 2025
The integration of evidence-based reasoning with retrieval-augmented generation (GraphRAG) holds great promise for enhancing large language model (LLM) question-answering (QA) capabilities. This research proposes a GraphRAG frame- work that improves the interpretability and reliability of LLM- generated answers in the medical domain. Our approach con- structs a knowledge graph using Neo4j to represent UMLS medical entities and relationships, and complements it with a vector store of textbook embeddings for dense passage retrieval. The system is designed to combine symbolic reasoning and semantic search to produce more context-aware and evidence- grounded responses. As a proof of concept, we evaluate our system on United States Medical Licensing Examination (USMLE)- style questions, which require clinical reasoning across multiple domains. While overall answer accuracy remains comparable to that of an LLM only baseline, our system consistently out- performs in citation fidelity; providing richer, more traceable justifications by explicitly linking answers to graph paths and textbook passages. These findings suggest that even when correctness may vary, graph-informed retrieval improves transparency and auditability, which are critical for high-stakes domains like medicine. Our results motivate further refinement of hybrid GraphRAG systems to enhance both factual accuracy and clinical trustworthiness in QA applications.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.