Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions
Abstrak
The Internet of Things (IoT) is one of the most widely used technologies today, and it has a significant effect on our lives in a variety of ways, including social, commercial, and economic aspects. In terms of automation, productivity, and comfort for consumers across a wide range of application areas, from education to smart cities, the present and future IoT technologies hold great promise for improving the overall quality of human life. However, cyber-attacks and threats greatly affect smart applications in the environment of IoT. The traditional IoT security techniques are insufficient with the recent security challenges considering the advanced booming of different kinds of attacks and threats. Utilizing artificial intelligence (AI) expertise, especially machine and deep learning solutions , is the key to delivering a dynamically enhanced and up-to-date security system for the next-generation IoT system. Throughout this article, we present a comprehensive picture on IoT security intelligence , which is built on machine and deep learning technologies that extract insights from raw data to intelligently protect IoT devices against a variety of cyber-attacks. Finally, based on our study, we highlight the associated research issues and future directions within the scope of our study. Overall, this article aspires to serve as a reference point and guide, particularly from a technical standpoint, for cybersecurity experts and researchers working in the context of IoT.
Artikel Ilmiah Terkait
K. Ouahada Inam Ullah Tamara Al Shloul + 5 lainnya
1 April 2023
The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications. Many traditional techniques for protecting the IoT are now ineffective due to new dangers and vulnerabilities. To keep their security procedures, IoT systems of the future will need AI-efficient machine learning and deep learning. The capabilities of artificial intelligence, particularly machine and deep learning solutions, must be used if the next-generation IoT system is to have a continuously changing and up-to-date security system. IoT security intelligence is examined in this paper from every angle available. An innovative method for protecting IoT devices against a variety of cyberattacks is to use machine learning and deep learning to gain information from raw data. Finally, we discuss relevant research issues and potential next steps considering our findings. This article examines how machine learning and deep learning can be used to detect attack patterns in unstructured data and safeguard IoT devices. We discuss the challenges that researchers face, as well as potential future directions for this research area, considering these findings. Anyone with an interest in the IoT or cybersecurity can use this website’s content as a technical resource and reference.
Prajoy Podder Subrato Bharati
27 Agustus 2022
The integration of the Internet of Things (IoT) connects a number of intelligent devices with minimum human interference that can interact with one another. IoT is rapidly emerging in the areas of computer science. However, new security problems are posed by the cross-cutting design of the multidisciplinary elements and IoT systems involved in deploying such schemes. Ineffective is the implementation of security protocols, i.e., authentication, encryption, application security, and access network for IoT systems and their essential weaknesses in security. Current security approaches can also be improved to protect the IoT environment effectively. In recent years, deep learning (DL)/machine learning (ML) has progressed significantly in various critical implementations. Therefore, DL/ML methods are essential to turn IoT system protection from simply enabling safe contact between IoT systems to intelligence systems in security. This review aims to include an extensive analysis of ML systems and state-of-the-art developments in DL methods to improve enhanced IoT device protection methods. On the other hand, various new insights in machine and deep learning for IoT securities illustrate how it could help future research. IoT protection risks relating to emerging or essential threats are identified, as well as future IoT device attacks and possible threats associated with each surface. We then carefully analyze DL and ML IoT protection approaches and present each approach’s benefits, possibilities, and weaknesses. This review discusses a number of potential challenges and limitations. The future works, recommendations, and suggestions of DL/ML in IoT security are also included.
Javed Asharf Hasnat Khurshid Abdul Wahab + 3 lainnya
20 Juli 2020
The Internet of Things (IoT) is poised to impact several aspects of our lives with its fast proliferation in many areas such as wearable devices, smart sensors and home appliances. IoT devices are characterized by their connectivity, pervasiveness and limited processing capability. The number of IoT devices in the world is increasing rapidly and it is expected that there will be 50 billion devices connected to the Internet by the end of the year 2020. This explosion of IoT devices, which can be easily increased compared to desktop computers, has led to a spike in IoT-based cyber-attack incidents. To alleviate this challenge, there is a requirement to develop new techniques for detecting attacks initiated from compromised IoT devices. Machine and deep learning techniques are in this context the most appropriate detective control approach against attacks generated from IoT devices. This study aims to present a comprehensive review of IoT systems-related technologies, protocols, architecture and threats emerging from compromised IoT devices along with providing an overview of intrusion detection models. This work also covers the analysis of various machine learning and deep learning-based techniques suitable to detect IoT systems related to cyber-attacks.
Yuxi Li Yue Zuo H. Song + 1 lainnya
15 November 2022
Internet-of-Things (IoT) technology is increasingly prominent in the current stage of social development. All walks of life have begun to implement the IoT integration technology, so as to strive to promote industrial modernization, intelligence, and digitalization. In this case, how to link high-risk network activities with entities has become the primary issue for promoting industrial development. However, at this stage, the security issues in the development of the IoT technology have contradictions that are difficult to resolve. According to this situation, how to make system defense intelligent and replace manual monitoring has become the future of the development of security architecture. This article combines existing security research to explore the possibility of deep learning (DL) in upgrading the IoT security architecture, discusses how the IoT can identify and respond to cyber attacks, and how to encrypt edge data transmission. Moreover, this article discusses security research in application fields, such as Industrial IoT, Internet of Vehicles, smart grid, smart home, and smart medical. Then, we summarized the areas that can be improved in future technological development, including sharing computing power through the edge network processing unit (NPU) central device and closely combining the environmental simulation model with the actual environment, as well as malicious code detection, intrusion detection, production safety, vulnerability detection, fault diagnosis, and blockchain technology.
Sarumathi Murali A. Jamalipour
15 Juni 2022
The Internet of Things (IoT) is an emerging technology that has earned a lot of research attention and technical revolution in recent years. Significantly, IoT connects and integrates billions of devices and communication networks around the world for several real-time IoT applications. On the other hand, cybersecurity attacks on the IoT are growing at an alarming rate since these devices are vulnerable because of their limited battery life, global connectivity, resource-constrained nature, and mobility. When attacks on IoT networks go undetected within a speculated period, such security attacks may prompt severe threats and disruptive behavior inside the network and make the network unavailable to the end user. Hence, it is quintessential to design an intelligent and robust security approach that promptly detects potential attack surfaces in a dynamic IoT network. This article investigates a comprehensive survey of machine learning, deep learning, and reinforcement learning-based intelligent intrusion detection techniques for securing IoT. Also, this article thoroughly illustrates the implementation of various categories of security threats in IoT with a neat diagram. Significantly, we classify the threats into two broad categories: 1) wireless sensor networks (WSNs) inherited security attacks and 2) routing protocol for low power and lossy networks (RPL) specific security attacks in IoT. Finally, we present potential research opportunities and challenges in intelligent intrusion detection approaches in future IoT security.
Daftar Referensi
5 referensiDeep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions
Iqbal H. Sarker
2 Agustus 2021
Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (AI) is nowadays considered as a core technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0). Due to its learning capabilities from data, DL technology originated from artificial neural network (ANN), has become a hot topic in the context of computing, and is widely applied in various application areas like healthcare, visual recognition, text analytics, cybersecurity, and many more. However, building an appropriate DL model is a challenging task, due to the dynamic nature and variations in real-world problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines that hamper development at the standard level. This article presents a structured and comprehensive view on DL techniques including a taxonomy considering various types of real-world tasks like supervised or unsupervised. In our taxonomy, we take into account deep networks for supervised or discriminative learning, unsupervised or generative learning as well as hybrid learning and relevant others. We also summarize real-world application areas where deep learning techniques can be used. Finally, we point out ten potential aspects for future generation DL modeling with research directions. Overall, this article aims to draw a big picture on DL modeling that can be used as a reference guide for both academia and industry professionals.
Machine Learning: Algorithms, Real-World Applications and Research Directions
Iqbal H. Sarker
8 Maret 2021
In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.
Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective
Iqbal H. Sarker
16 Februari 2021
Deep learning, which is originated from an artificial neural network (ANN), is one of the major technologies of today’s smart cybersecurity systems or policies to function in an intelligent manner. Popular deep learning techniques, such as multi-layer perceptron, convolutional neural network, recurrent neural network or long short-term memory, self-organizing map, auto-encoder, restricted Boltzmann machine, deep belief networks, generative adversarial network, deep transfer learning, as well as deep reinforcement learning, or their ensembles and hybrid approaches can be used to intelligently tackle the diverse cybersecurity issues. In this paper, we aim to present a comprehensive overview from the perspective of these neural networks and deep learning techniques according to today’s diverse needs. We also discuss the applicability of these techniques in various cybersecurity tasks such as intrusion detection, identification of malware or botnets, phishing, predicting cyberattacks, e.g. denial of service, fraud detection or cyberanomalies, etc. Finally, we highlight several research issues and future directions within the scope of our study in the field. Overall, the ultimate goal of this paper is to serve as a reference point and guidelines for the academia and professionals in the cyber industries, especially from the deep learning point of view.
Artikel yang Mensitasi
3 sitasiUnleashing the Power of IoT: A Comprehensive Review of IoT Applications and Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0
Alex Phoummalayvane R. Akl + 1 lainnya
1 Agustus 2023
The Internet of Things (IoT) technology and devices represent an exciting field in computer science that is rapidly emerging worldwide. The demand for automation and efficiency has also been a contributing factor to the advancements in this technology. The proliferation of IoT devices coincides with advancements in wireless networking technologies, driven by the enhanced connectivity of the internet. Today, nearly any everyday object can be connected to the network, reflecting the growing demand for automation and efficiency. This paper reviews the emergence of IoT devices, analyzed their common applications, and explored the future prospects in this promising field of computer science. The examined applications encompass healthcare, agriculture, and smart cities. Although IoT technology exhibits similar deployment trends, this paper will explore different fields to discern the subtle nuances that exist among them. To comprehend the future of IoT, it is essential to comprehend the driving forces behind its advancements in various industries. By gaining a better understanding of the emergence of IoT devices, readers will develop insights into the factors that have propelled their growth and the conditions that led to technological advancements. Given the rapid pace at which IoT technology is advancing, this paper provides researchers with a deeper understanding of the factors that have brought us to this point and the ongoing efforts that are actively shaping the future of IoT. By offering a comprehensive analysis of the current landscape and potential future developments, this paper serves as a valuable resource to researchers seeking to contribute to and navigate the ever-evolving IoT ecosystem.
Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation
L. L. Dhirani Ciarán Eising + 2 lainnya
17 Januari 2024
The Healthcare Internet-of-Things (H-IoT), commonly known as Digital Healthcare, is a data-driven infrastructure that highly relies on smart sensing devices (i.e., blood pressure monitors, temperature sensors, etc.) for faster response time, treatments, and diagnosis. However, with the evolving cyber threat landscape, IoT devices have become more vulnerable to the broader risk surface (e.g., risks associated with generative AI, 5G-IoT, etc.), which, if exploited, may lead to data breaches, unauthorized access, and lack of command and control and potential harm. This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices. The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application. Detecting and responding to anomalies involves various cyber-attacks and protocols such as Wi-Fi 6, Narrowband Internet of Things (NB-IoT), Bluetooth, ZigBee, LoRa, and 5G New Radio (5G NR). A robust authentication mechanism based on machine learning and deep learning techniques is required to protect and mitigate H-IoT devices from increasing cybersecurity vulnerabilities. Hence, in this review paper, security and privacy challenges and risk mitigation strategies for building resilience in H-IoT are explored and reported.
Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence
K. Ouahada Inam Ullah + 6 lainnya
1 April 2023
The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications. Many traditional techniques for protecting the IoT are now ineffective due to new dangers and vulnerabilities. To keep their security procedures, IoT systems of the future will need AI-efficient machine learning and deep learning. The capabilities of artificial intelligence, particularly machine and deep learning solutions, must be used if the next-generation IoT system is to have a continuously changing and up-to-date security system. IoT security intelligence is examined in this paper from every angle available. An innovative method for protecting IoT devices against a variety of cyberattacks is to use machine learning and deep learning to gain information from raw data. Finally, we discuss relevant research issues and potential next steps considering our findings. This article examines how machine learning and deep learning can be used to detect attack patterns in unstructured data and safeguard IoT devices. We discuss the challenges that researchers face, as well as potential future directions for this research area, considering these findings. Anyone with an interest in the IoT or cybersecurity can use this website’s content as a technical resource and reference.