Impact of Virtual Reality Cognitive and Motor Exercises on Brain Health
Abstrak
Innovative technologies of the 21st century have an extremely significant impact on all activities of modern humans. Among them, virtual reality (VR) offers great opportunities for scientific research and public health. The results of research to date both demonstrate the beneficial effects of using virtual worlds, and indicate undesirable effects on bodily functions. This review presents interesting recent findings related to training/exercise in virtual environments and its impact on cognitive and motor functions. It also highlights the importance of VR as an effective tool for assessing and diagnosing these functions both in research and modern medical practice. The findings point to the enormous future potential of these rapidly developing innovative technologies. Of particular importance are applications of virtual reality in basic and clinical neuroscience.
Artikel Ilmiah Terkait
Ayah Hamad Bochen Jia
1 September 2022
Despite virtual reality (VR) being initially marketed toward gaming, there are many potential and existing VR applications in various sectors and fields, including education, training, simulations, and even in exercise and healthcare. Unfortunately, there is still a lack of general understanding of the strengths and limitations of VR as a technology in various application domains. Therefore, the aim of this literature review is to contribute to the library of literature concerning VR technology, its applications in everyday use, and some of its existing drawbacks. Key VR applications were discussed in terms of how they are currently utilized or can be utilized in the future, spanning fields such as medicine, engineering, education, and entertainment. The main benefits of VR are expressed through the text, followed by a discussion of some of the main limitations of current VR technologies and how they can be mitigated or improved. Overall, this literature review shows how virtual reality technology has the potential to be a greatly beneficial tool in a multitude of applications and a wide variety of fields. VR as a technology is still in its early stages, but more people are becoming interested in it and are optimistic about seeing what kind of changes VR can make in their everyday lives. With how rapidly modern society has adapted to personal computers and smartphones, VR has the opportunity to become the next big technological turning point that will eventually become commonplace in most households.
Panagiotis Kourtesis S. Collina Danai Korre + 2 lainnya
14 Januari 2020
Virtual reality (VR) head-mounted displays (HMD) appear to be effective research tools, which may address the problem of ecological validity in neuropsychological testing. However, their widespread implementation is hindered by VR induced symptoms and effects (VRISE) and the lack of skills in VR software development. This study offers guidelines for the development of VR software in cognitive neuroscience and neuropsychology, by describing and discussing the stages of the development of Virtual Reality Everyday Assessment Lab (VR-EAL), the first neuropsychological battery in immersive VR. Techniques for evaluating cognitive functions within a realistic storyline are discussed. The utility of various assets in Unity, software development kits, and other software are described so that cognitive scientists can overcome challenges pertinent to VRISE and the quality of the VR software. In addition, this pilot study attempts to evaluate VR-EAL in accordance with the necessary criteria for VR software for research purposes. The VR neuroscience questionnaire (VRNQ; Kourtesis et al., 2019b) was implemented to appraise the quality of the three versions of VR-EAL in terms of user experience, game mechanics, in-game assistance, and VRISE. Twenty-five participants aged between 20 and 45 years with 12–16 years of full-time education evaluated various versions of VR-EAL. The final version of VR-EAL achieved high scores in every sub-score of the VRNQ and exceeded its parsimonious cut-offs. It also appeared to have better in-game assistance and game mechanics, while its improved graphics substantially increased the quality of the user experience and almost eradicated VRISE. The results substantially support the feasibility of the development of effective VR research and clinical software without the presence of VRISE during a 60-min VR session.
E. Quinque S. Krohn A. Thöne-Otto + 11 lainnya
1 April 2020
Virtual reality (VR) represents a key technology of the 21st century, attracting substantial interest from a wide range of scientific disciplines. With regard to clinical neuropsychology, a multitude of new VR applications are being developed to overcome the limitations of classical paradigms. Consequently, researchers increasingly face the challenge of systematically evaluating the characteristics and quality of VR applications to design the optimal paradigm for their specific research question and study population. However, the multifaceted character of contemporary VR is not adequately captured by the traditional quality criteria (ie, objectivity, reliability, validity), highlighting the need for an extended paradigm evaluation framework. To address this gap, we propose a multidimensional evaluation framework for VR applications in clinical neuropsychology, summarized as an easy-to-use checklist (VR-Check). This framework rests on 10 main evaluation dimensions encompassing cognitive domain specificity, ecological relevance, technical feasibility, user feasibility, user motivation, task adaptability, performance quantification, immersive capacities, training feasibility, and predictable pitfalls. We show how VR-Check enables systematic and comparative paradigm optimization by illustrating its application in an exemplary research project on the assessment of spatial cognition and executive functions with immersive VR. This application furthermore demonstrates how the framework allows researchers to identify across-domain trade-offs, makes deliberate design decisions explicit, and optimizes the allocation of study resources. Complementing recent approaches to standardize clinical VR studies, the VR-Check framework enables systematic and project-specific paradigm optimization for behavioral and cognitive research in neuropsychology.
D. Feng Yuting Chen Xiangning Wang + 8 lainnya
23 Maret 2023
Virtual Reality (VR) has emerged as a new safe and efficient tool for the rehabilitation of many childhood and adulthood illnesses. VR-based therapies have the potential to improve both motor and functional skills in a wide range of age groups through cortical reorganization and the activation of various neuronal connections. Recently, the potential for using serious VR-based games that combine perceptual learning and dichoptic stimulation has been explored for the rehabilitation of ophthalmological and neurological disorders. In ophthalmology, several clinical studies have demonstrated the ability to use VR training to enhance stereopsis, contrast sensitivity, and visual acuity. The use of VR technology provides a significant advantage in training each eye individually without requiring occlusion or penalty. In neurological disorders, the majority of patients undergo recurrent episodes (relapses) of neurological impairment, however, in a few cases (60–80%), the illness progresses over time and becomes chronic, consequential in cumulated motor disability and cognitive deficits. Current research on memory restoration has been spurred by theories about brain plasticity and findings concerning the nervous system's capacity to reconstruct cellular synapses as a result of interaction with enriched environments. Therefore, the use of VR training can play an important role in the improvement of cognitive function and motor disability. Although there are several reviews in the community employing relevant Artificial Intelligence in healthcare, VR has not yet been thoroughly examined in this regard. In this systematic review, we examine the key ideas of VR-based training for prevention and control measurements in ocular diseases such as Myopia, Amblyopia, Presbyopia, and Age-related Macular Degeneration (AMD), and neurological disorders such as Alzheimer, Multiple Sclerosis (MS) Epilepsy and Autism spectrum disorder. This review highlights the fundamentals of VR technologies regarding their clinical research in healthcare. Moreover, these findings will raise community awareness of using VR training and help researchers to learn new techniques to prevent and cure different diseases. We further discuss the current challenges of using VR devices, as well as the future prospects of human training.
F. Richlan Moritz Weiß Patrick Kastner + 1 lainnya
19 Oktober 2023
The present article reports a narrative review of intervention (i.e., training) studies using Virtual Reality (VR) in sports contexts. It provides a qualitative overview and narrative summary of such studies to clarify the potential benefits of VR technology for sports performance enhancement, to extract the main characteristics of the existing studies, and to inform and guide future research. Our literature search and review eventually resulted in 12 intervention studies with a pre vs. post design focused on different sports, including target and precision sports (archery, bowling, curling, darts, golf), bat/racquet and ball sports (baseball, table tennis), goal sports (football/soccer, basketball), martial arts (karate), and sport-unspecific processes such as bodily sensations and balancing. The samples investigated in the primary studies included novice, amateur, and expert athletes (total aggregated sample size N = 493). Many studies found statistically significant effects in relevant target skills following interventions in VR, often outperforming training effects in passive or active control conditions (e.g., using conventional training protocols). Therefore, interventions in VR (or extended reality) have the potential to elicit real effects in sports performance enhancement through training of motor and psychological skills and capabilities in athletes, including perception-action skills, strategic, tactical and decision-making, responding to unexpected events, and enhancing psychological resilience and mental performance under pressure. The neurocognitive mechanisms (e.g., visual search behavior, imagery), methodological aspects (e.g., adaptive training difficulty), and the issues of real-world transfer and generalizability via which these potential sports-performance-related improvements may occur are discussed. Finally, limitations of the present review, the included studies, the current state of the field in general as well as an outlook and future perspectives for research designs and directions are taken into consideration.
Daftar Referensi
5 referensiCybersickness in Virtual Reality Questionnaire (CSQ-VR): A Validation and Comparison against SSQ and VRSQ
Sarah E. MacPherson Josie Linnell + 3 lainnya
29 Januari 2023
Cybersickness is a drawback of virtual reality (VR), which also affects the cognitive and motor skills of users. The Simulator Sickness Questionnaire (SSQ) and its variant, the Virtual Reality Sickness Questionnaire (VRSQ), are two tools that measure cybersickness. However, both tools suffer from important limitations which raise concerns about their suitability. Two versions of the Cybersickness in VR Questionnaire (CSQ-VR), a paper-and-pencil and a 3D–VR version, were developed. The validation of the CSQ-VR and a comparison against the SSQ and the VRSQ were performed. Thirty-nine participants were exposed to three rides with linear and angular accelerations in VR. Assessments of cognitive and psychomotor skills were performed at baseline and after each ride. The validity of both versions of the CSQ-VR was confirmed. Notably, CSQ-VR demonstrated substantially better internal consistency than both SSQ and VRSQ. Additionally, CSQ-VR scores had significantly better psychometric properties in detecting a temporary decline in performance due to cybersickness. Pupil size was a significant predictor of cybersickness intensity. In conclusion, the CSQ-VR is a valid assessment of cybersickness with superior psychometric properties to SSQ and VRSQ. The CSQ-VR enables the assessment of cybersickness during VR exposure, and it benefits from examining pupil size, a biomarker of cybersickness.
Virtual reality for the assessment and rehabilitation of neglect: where are we now? A 6-year review update
S. Cavedoni Valentina Mancuso + 3 lainnya
30 Mei 2022
Unilateral spatial neglect (USN) is a frequent repercussion of a cerebrovascular accident, typically a stroke. USN patients fail to orient their attention to the contralesional side to detect auditory, visual, and somatosensory stimuli, as well as to collect and purposely use this information. Traditional methods for USN assessment and rehabilitation include paper-and-pencil procedures, which address cognitive functions as isolated from other aspects of patients’ functioning within a real-life context. This might compromise the ecological validity of these procedures and limit their generalizability; moreover, USN evaluation and treatment currently lacks a gold standard. The field of technology has provided several promising tools that have been integrated within the clinical practice; over the years, a “first wave” has promoted computerized methods, which cannot provide an ecological and realistic environment and tasks. Thus, a “second wave” has fostered the implementation of virtual reality (VR) devices that, with different degrees of immersiveness, induce a sense of presence and allow patients to actively interact within the life-like setting. The present paper provides an updated, comprehensive picture of VR devices in the assessment and rehabilitation of USN, building on the review of Pedroli et al. (2015). The present paper analyzes the methodological and technological aspects of the studies selected, considering the issue of usability and ecological validity of virtual environments and tasks. Despite the technological advancement, the studies in this field lack methodological rigor as well as a proper evaluation of VR usability and should improve the ecological validity of VR-based assessment and rehabilitation of USN.
Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An Immersive Virtual Reality Neuropsychological Battery with Enhanced Ecological Validity
S. Collina Panagiotis Kourtesis + 2 lainnya
10 Agustus 2020
Abstract Objective: The assessment of cognitive functions such as prospective memory, episodic memory, attention, and executive functions benefits from an ecologically valid approach to better understand how performance outcomes generalize to everyday life. Immersive virtual reality (VR) is considered capable of simulating real-life situations to enhance ecological validity. The present study attempted to validate the Virtual Reality Everyday Assessment Lab (VR-EAL), an immersive VR neuropsychological battery, against an extensive paper-and-pencil neuropsychological battery. Methods: Forty-one participants (21 females) were recruited: 18 gamers and 23 non-gamers who attended both an immersive VR and a paper-and-pencil testing session. Bayesian Pearson’s correlation analyses were conducted to assess construct and convergent validity of the VR-EAL. Bayesian t-tests were performed to compare VR and paper-and-pencil testing in terms of administration time, similarity to real-life tasks (i.e., ecological validity), and pleasantness. Results: VR-EAL scores were significantly correlated with their equivalent scores on the paper-and-pencil tests. The participants’ reports indicated that the VR-EAL tasks were significantly more ecologically valid and pleasant than the paper-and-pencil neuropsychological battery. The VR-EAL battery also had a shorter administration time. Conclusion: The VR-EAL appears as an effective neuropsychological tool for the assessment of everyday cognitive functions, which has enhanced ecological validity, a highly pleasant testing experience, and does not induce cybersickness.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.