Visual Transformers: Token-based Image Representation and Processing for Computer Vision
Abstrak
Computer vision has achieved great success using standardized image representations -- pixel arrays, and the corresponding deep learning operators -- convolutions. In this work, we challenge this paradigm: we instead (a) represent images as a set of visual tokens and (b) apply visual transformers to find relationships between visual semantic concepts. Given an input image, we dynamically extract a set of visual tokens from the image to obtain a compact representation for high-level semantics. We then use visual transformers to operate over the visual tokens to densely model relationships between them. We find that this paradigm of token-based image representation and processing drastically outperforms its convolutional counterparts on image classification and semantic segmentation. To demonstrate the power of this approach on ImageNet classification, we use ResNet as a convenient baseline and use visual transformers to replace the last stage of convolutions. This reduces the stage's MACs by up to 6.9x, while attaining up to 4.53 points higher top-1 accuracy. For semantic segmentation, we use a visual-transformer-based FPN (VT-FPN) module to replace a convolution-based FPN, saving 6.5x fewer MACs while achieving up to 0.35 points higher mIoU on LIP and COCO-stuff.
Artikel Ilmiah Terkait
Chunjing Xu Kai Han Yunhe Wang + 4 lainnya
13 Juli 2021
Vision transformers have been successfully applied to image recognition tasks due to their ability to capture long-range dependencies within an image. However, there are still gaps in both performance and computational cost between transformers and existing convolutional neural networks (CNNs). In this paper, we aim to address this issue and develop a network that can outperform not only the canonical transformers, but also the high-performance convolutional models. We propose a new transformer based hybrid network by taking advantage of transformers to capture long-range dependencies, and of CNNs to extract local information. Furthermore, we scale it to obtain a family of models, called CMTs, obtaining much better trade-off for accuracy and efficiency than previous CNN-based and transformer-based models. In particular, our CMT-S achieves 83.5% top-1 accuracy on ImageNet, while being 14x and 2x smaller on FLOPs than the existing DeiT and EfficientNet, respectively. The proposed CMT-S also generalizes well on CIFAR10 (99.2%), CIFAR100 (91.7%), Flowers (98.7%), and other challenging vision datasets such as COCO (44.3% mAP), with considerably less computational cost.
Abulikemu Abuduweili Ali Hassani Humphrey Shi + 3 lainnya
12 April 2021
With the rise of Transformers as the standard for language processing, and their advancements in computer vision, there has been a corresponding growth in parameter size and amounts of training data. Many have come to believe that because of this, transformers are not suitable for small sets of data. This trend leads to concerns such as: limited availability of data in certain scientific domains and the exclusion of those with limited resource from research in the field. In this paper, we aim to present an approach for small-scale learning by introducing Compact Transformers. We show for the first time that with the right size, convolutional tokenization, transformers can avoid overfitting and outperform state-of-the-art CNNs on small datasets. Our models are flexible in terms of model size, and can have as little as 0.28M parameters while achieving competitive results. Our best model can reach 98% accuracy when training from scratch on CIFAR-10 with only 3.7M parameters, which is a significant improvement in data-efficiency over previous Transformer based models being over 10x smaller than other transformers and is 15% the size of ResNet50 while achieving similar performance. CCT also outperforms many modern CNN based approaches, and even some recent NAS-based approaches. Additionally, we obtain a new SOTA result on Flowers-102 with 99.76% top-1 accuracy, and improve upon the existing baseline on ImageNet (82.71% accuracy with 29% as many parameters as ViT), as well as NLP tasks. Our simple and compact design for transformers makes them more feasible to study for those with limited computing resources and/or dealing with small datasets, while extending existing research efforts in data efficient transformers. Our code and pre-trained models are publicly available at https://github.com/SHI-Labs/Compact-Transformers.
Yue Cao Zheng Zhang Stephen Lin + 5 lainnya
2021
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github.com/microsoft/Swin-Transformer.
Simon Kornblith Alexey Dosovitskiy M. Raghu + 2 lainnya
19 Agustus 2021
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.
Xia Zhao Xuming Han Limin Wang + 3 lainnya
23 Maret 2024
In computer vision, a series of exemplary advances have been made in several areas involving image classification, semantic segmentation, object detection, and image super-resolution reconstruction with the rapid development of deep convolutional neural network (CNN). The CNN has superior features for autonomous learning and expression, and feature extraction from original input data can be realized by means of training CNN models that match practical applications. Due to the rapid progress in deep learning technology, the structure of CNN is becoming more and more complex and diverse. Consequently, it gradually replaces the traditional machine learning methods. This paper presents an elementary understanding of CNN components and their functions, including input layers, convolution layers, pooling layers, activation functions, batch normalization, dropout, fully connected layers, and output layers. On this basis, this paper gives a comprehensive overview of the past and current research status of the applications of CNN models in computer vision fields, e.g., image classification, object detection, and video prediction. In addition, we summarize the challenges and solutions of the deep CNN, and future research directions are also discussed.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.