DOI: 10.3390/ELECTRONICS10091012
Terbit pada 23 April 2021 Pada Electronics

Machine Learning in Wireless Sensor Networks for Smart Cities: A Survey

A. Haque F. Blaabjerg Himanshu Sharma

Abstrak

Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications.

Artikel Ilmiah Terkait

When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review

Makó Csaba Amir H. Mosavi Mehdi Sookhak + 7 lainnya

2022

The manuscript represents a comeprehensive and systematic literature review on the machine learning methods in the emerging applications of smart city. Application domains include the essential aspect of the smart cities including the energy, healthcare, transportation, security, and pollution. The methodology presents the state-of-the-art, taxonomy, evaluation and model performance. The study concludes that the hybrid models and ensembles are the best performers since they exhibit both high accuracy and not-costly complexity. On the other hand, the deep learning (DL) techniques had higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation power. Moreover, all these advanced ML methods had a slower processing speed than the single methods. Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial neural network (ANN) for accuracy and other metrics. However, since the difference is negligible, it can be concluded that using either of them is appropriate. The study’s findings identify the pros and cons of the methods in each application for future researchers, practitioners, and policy-makers for the right problem within the context of smart cities.

IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare - A Review

Iman A. Akour Syed Shehryar Akbar M Zahid Hasan + 5 lainnya

23 Agustus 2021

Smart city is a collective term for technologies and concepts that are directed toward making cities efficient, technologically more advanced, greener and more socially inclusive. These concepts include technical, economic and social innovations. This term has been tossed around by various actors in politics, business, administration and urban planning since the 2000s to establish tech-based changes and innovations in urban areas. The idea of the smart city is used in conjunction with the utilization of digital technologies and at the same time represents a reaction to the economic, social and political challenges that post-industrial societies are confronted with at the start of the new millennium. The key focus is on dealing with challenges faced by urban society, such as environmental pollution, demographic change, population growth, healthcare, the financial crisis or scarcity of resources. In a broader sense, the term also includes non-technical innovations that make urban life more sustainable. So far, the idea of using IoT-based sensor networks for healthcare applications is a promising one with the potential of minimizing inefficiencies in the existing infrastructure. A machine learning approach is key to successful implementation of the IoT-powered wireless sensor networks for this purpose since there is large amount of data to be handled intelligently. Throughout this paper, it will be discussed in detail how AI-powered IoT and WSNs are applied in the healthcare sector. This research will be a baseline study for understanding the role of the IoT in smart cities, in particular in the healthcare sector, for future research works.

A Survey on Machine Learning Software-Defined Wireless Sensor Networks (ML-SDWSNs): Current Status and Major Challenges

J. F. Jurado Letizia Marchegiani A. Abu-Mahfouz + 2 lainnya

3 Februari 2022

Wireless Sensor Network (WSN), which are enablers of the Internet of Things (IoT) technology, are typically used en-masse in widely physically distributed applications to monitor the dynamic conditions of the environment. They collect raw sensor data that is processed centralised. With the current traditional techniques of state-of-art WSN programmed for specific tasks, it is hard to react to any dynamic change in the conditions of the environment beyond the scope of the intended task. To solve this problem, a synergy between Software-Defined Networking (SDN) and WSN has been proposed. This paper aims to present the current status of Software-Defined Wireless Sensor Network (SDWSN) proposals and introduce the readers to the emerging research topic that combines Machine Learning (ML) and SDWSN concepts, also called ML-SDWSNs. ML-SDWSN grants an intelligent, centralised and resource-aware architecture to achieve improved network performance and solve the challenges currently found in the practical implementation of SDWSNs. This survey provides helpful information and insights to the scientific and industrial communities, and professional organisations interested in SDWSN, mainly the current state-of-art, ML techniques, and open issues.

Machine Learning for Advanced Wireless Sensor Networks: A Review

Sangkeum Lee Dongsoo Har L. Vecchietti + 2 lainnya

1 Juni 2021

Wireless sensor networks (WSNs) are typically used with dynamic conditions of task-related environments for sensing(monitoring) and gathering of raw sensor data for subsequent forwarding to a base station. In order to deploy WSNs in real environments, a variety of technical challenges must be addressed. With traditional techniques developed for a specific task, it is hard to react in dynamic situations beyond the scope of the intended task. As a solution to this problem, machine learning (ML) techniques that are able to handle dynamic situations with successful learning process have been applied lately in WSNs. Particularly, deep learning (DL) techniques, a class of ML techniques characterized by the use of deep neural network, are used for WSNs to extract higher level features from raw sensor data. A range of benefits obtained from ML techniques applied to WSNs can be described as reduced computational complexity, increased feasibility in finding optimal solutions, increased energy efficiency, etc. On the other hand, it is found from our survey that large training time and large dataset to get acceptable performance are accompanied with large energy consumption which is not favorable for resource-restrained WSNs. Reviews on the applications of ML techniques in WSNs appeared in the literature. However, few reviews have dealt with the applications of DL techniques in WSNs. In this review, recent developments of ML techniques for WSNs are presented with much emphasis on DL techniques. The DL techniques developed for various applications in WSNs are addressed together with their respective deep neural network architectures.

Machine Learning: Algorithms, Real-World Applications and Research Directions

Iqbal H. Sarker

8 Maret 2021

In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

Daftar Referensi

2 referensi

Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios

Muhammad Mustaqim S. Qazi + 3 lainnya

28 Januari 2020

The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing seamless connectivity between heterogeneous networks (HetNets). The eventual aim of IoT is to introduce the plug and play technology providing the end-user, ease of operation, remotely access control and configurability. This paper presents the IoT technology from a bird’s eye view covering its statistical/architectural trends, use cases, challenges and future prospects. The paper also presents a detailed and extensive overview of the emerging 5G-IoT scenario. Fifth Generation (5G) cellular networks provide key enabling technologies for ubiquitous deployment of the IoT technology. These include carrier aggregation, multiple-input multiple-output (MIMO), massive-MIMO (M-MIMO), coordinated multipoint processing (CoMP), device-to-device (D2D) communications, centralized radio access network (CRAN), software-defined wireless sensor networking (SD-WSN), network function virtualization (NFV) and cognitive radios (CRs). This paper presents an exhaustive review for these key enabling technologies and also discusses the new emerging use cases of 5G-IoT driven by the advances in artificial intelligence, machine and deep learning, ongoing 5G initiatives, quality of service (QoS) requirements in 5G and its standardization issues. Finally, the paper discusses challenges in the implementation of 5G-IoT due to high data-rates requiring both cloud-based platforms and IoT devices based edge computing.

A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems

Lalit Chettri R. Bera

1 Januari 2020

Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.

Artikel yang Mensitasi

4 sitasi

Machine Learning Solutions for the Security of Wireless Sensor Networks: A Review

Tariq Shahzad Umair Ahmad Salaria + 5 lainnya

2024

Energy efficiency and safety are two essential factors that play a significant role in operating a wireless sensor network. However, it is claimed that these two factors are naturally conflicting. The level of electrical consumption required by a security system is directly proportional to its degree of complexity. Wireless sensor networks require additional security measures above the capabilities of conventional network security protocols, such as encryption and key management. The potential application of machine learning techniques to address network security concerns is frequently discussed. These devices will have complete artificial intelligence capabilities, enabling them to understand their environment and respond. During the training phase, machine-learning systems may face challenges due to the large amount of data required and the complex nature of the training procedure. The main objective of the article is to know about different machine learning algorithms that are used to solve the security issues of wireless sensor networks. This study also focuses on the use of wireless sensor networks in different fields. Furthermore, this study also focuses on different Machine learning algorithms that are used to secure wireless sensor networks. Moreover, this study also addresses issues of adapting machine learning algorithms to accommodate the sensors’ functionalities in the network configuration. Furthermore, this article also focuses on open issues in this field that must be solved.

An Enhanced Energy Optimization Model for Industrial Wireless Sensor Networks Using Machine Learning

K. Raju A. Bagwari + 5 lainnya

2023

Industrial Wireless Sensor Networks (WSNs) are becoming increasingly popular due to their enhanced scalability and low cost of deployment. However, they also present new challenges, such as energy optimization and network maintenance, which industrial users must address. In order to meet the challenges, Machine Learning techniques have been used to create an enhanced energy optimization model for Industrial WSNs. This model utilizes knowledge-based learning to identify and optimize the energy consumption of the nodes, allowing Industrial WSNs to consume the least amount of energy for the given tasks. In addition, the model also evaluates the effectiveness of feedback control schemes and predicts the best possible outcomes for its application in Industrial WSNs to ensure higher efficiency and longer network lifetime. The model also enables the exploration of potential trade-offs between power consumption and communication performance to ensure a better energy-efficient solution. The proposed EEOM obtained 64.72% transmission energy consumption, 35.28% transmission energy saving, 67.27% received energy consumption, 32.73% received energy storage, 52.16% idle-mode energy consumption, 47.84% idle-mode energy storage, 66.31% sleep-mode energy consumption, and 33.69% sleep-mode energy storage. It also obtained 90.44% prevalence threshold, 90.33% critical success index, 93.93% Delta-P, 90.06% MCC and 92.17% FMI rates. It also provides the ability to identify the best selection of nodes and paths for data transmission to reduce network traffic. When applied in conjunction with manual intervention, these automated knowledge-based techniques will make Industrial WSNs more reliable, efficient, and energy-cost effective.

Wireless Sensor Networks for Water Quality Monitoring: A Comprehensive Review

Gustavo Adulfo López-Ramírez A. Aragón-Zavala

2023

This comprehensive review examines the use of Wireless Sensor Networks as a solution for addressing water quality monitoring and data scarcity. It compares Wireless Sensor Networks with traditional laboratory-based and in-situ monitoring methods, highlighting their superior response speed, cost-effectiveness, ease of deployment, and reliable measurements. The paper provides an overview of wireless sensor node architecture, discussing subsystems, Quality of Service requirements, and the significance of low power consumption in microcontroller units. Network solutions for short, medium, and long-range applications are explored, highlighting that Low-Power Wide Area Network is the most effective option for water quality monitoring. Furthermore, the review acknowledges the potential of machine learning techniques within Wireless Sensor Networks for Water Quality Monitoring, highlighting their versatility. A case study analysis of three LPWAN applications is presented, discussing their key characteristics, potential benefits, and important considerations for future implementations. By consolidating current knowledge, this review emphasizes the capacity of Wireless Sensor Networks to overcome data scarcity challenges in water quality monitoring. Valuable insights are provided for researchers, practitioners, and decision-makers seeking to leverage Wireless Sensor Networks, LPWAN technologies, and machine learning techniques for efficient and cost-effective global water quality monitoring.