Ethnographic data in the age of big data: How to compare and combine
Abstrak
Big data enables researchers to closely follow the behavior of large groups of individuals by using high-frequency digital traces. However, these digital traces often lack context, and it is not always clear what is measured. In contrast, data from ethnographic fieldwork follows a limited number of individuals but can provide the context often lacking from big data. Yet, there is an under-explored potential in combining ethnographic data with big data and other digital data sources. This paper presents ways that quantitative research designs can combine big data and ethnographic data and account for the synergies that such combinations can provide. We highlight the differences and similarities between ethnographic data and big data, focusing on the three dimensions: individuals, depth of information, and time. We outline how ethnographic data can validate big data by providing a “ground truth” and complement it by giving a “thick description.” Further, we lay out ways that analysis carried out using big data could benefit from collaboration with ethnographers, and we discuss the potential within the fields of machine learning and causal inference.
Artikel Ilmiah Terkait
Michael Zimmer Katie Shilton Matthew J. Bietz + 5 lainnya
1 Juli 2021
Frequent public uproar over forms of data science that rely on information about people demonstrates the challenges of defining and demonstrating trustworthy digital data research practices. This paper reviews problems of trustworthiness in what we term pervasive data research: scholarship that relies on the rich information generated about people through digital interaction. We highlight the entwined problems of participant unawareness of such research and the relationship of pervasive data research to corporate datafication and surveillance. We suggest a way forward by drawing from the history of a different methodological approach in which researchers have struggled with trustworthy practice: ethnography. To grapple with the colonial legacy of their methods, ethnographers have developed analytic lenses and researcher practices that foreground relations of awareness and power. These lenses are inspiring but also challenging for pervasive data research, given the flattening of contexts inherent in digital data collection. We propose ways that pervasive data researchers can incorporate reflection on awareness and power within their research to support the development of trustworthy data science.
Zhasmina Tacheva
1 Juli 2022
Through a critical analysis of recent developments in the theory and practice of data science, including nascent feminist approaches to data collection and analysis, this commentary aims to signal the need for a transnational feminist orientation towards data science. I argue that while much needed in the context of persistent algorithmic oppression, a Western feminist lens limits the scope of problems, and thus—solutions, critical data scholars, and scientists can consider. A resolutely transnational feminist approach on the other hand, can provide data theorists and practitioners with the hermeneutic tools necessary to identify and disrupt instances of injustice in a more inclusive and comprehensive manner. A transnational feminist orientation to data science can pay particular attention to the communities rendered most vulnerable by algorithmic oppression, such as women of color and populations in non-Western countries. I present five ways in which transnational feminism can be leveraged as an intervention into the current data science canon.
Lauri Goldkind Geri L. Dimas R. Konrad
1 Januari 2023
The social services sector, comprised of a constellation of programs meeting critical human needs, lacks the resources and infrastructure to implement data science tools. As the use of data science continues to expand, it has been accompanied by a rise in interest and commitment to using these tools for social good. This commentary examines overlooked, and under-researched limitations of data science applications in the social sector—the volume, quality, and context of the available data that currently exists in social service systems require unique considerations. We explore how the presence of small data within the social service contexts can result in extrapolation; if not properly considered, data science can negatively impact the organizations data scientists are trying to assist. We conclude by proposing three ways data scientists interested in working within the social services sector can enhance their contributions to the field: refining and leveraging available data, improving collaborations, and respecting data limitations.
F. Cole Z. Vesoulis A. Husain
16 Agustus 2022
Abstract Child health is defined by a complex, dynamic network of genetic, cultural, nutritional, infectious, and environmental determinants at distinct, developmentally determined epochs from preconception to adolescence. This network shapes the future of children, susceptibilities to adult diseases, and individual child health outcomes. Evolution selects characteristics during fetal life, infancy, childhood, and adolescence that adapt to predictable and unpredictable exposures/stresses by creating alternative developmental phenotype trajectories. While child health has improved in the United States and globally over the past 30 years, continued improvement requires access to data that fully represent the complexity of these interactions and to new analytic methods. Big Data and innovative data science methods provide tools to integrate multiple data dimensions for description of best clinical, predictive, and preventive practices, for reducing racial disparities in child health outcomes, for inclusion of patient and family input in medical assessments, and for defining individual disease risk, mechanisms, and therapies. However, leveraging these resources will require new strategies that intentionally address institutional, ethical, regulatory, cultural, technical, and systemic barriers as well as developing partnerships with children and families from diverse backgrounds that acknowledge historical sources of mistrust. We highlight existing pediatric Big Data initiatives and identify areas of future research. Impact Big Data and data science can improve child health. This review highlights the importance for child health of child-specific and life course-based Big Data and data science strategies. This review provides recommendations for future pediatric-specific Big Data and data science research.
Jie Sheng Xiaojun Wang Zaheer Khan + 1 lainnya
2 November 2020
Although scholars in management recognize the value of harnessing big data to understand, predict and respond to future events, there remains little or very limited overview of how various analytics techniques can be harnessed to provide the basis for guiding scholars in studying contemporary management topics and global grand challenges raised by the COVID-19 pandemic In this Methodology Corner, we present a review of the methodological innovations in studying big data analytics and how they can be better utilized to examine contemporary organizational issues We provide insights on methods in descriptive/diagnostic, predictive and prescriptive analytics, and how they can be leveraged to study 'black swan' events such as the COVID-19-related global crisis and its aftermath's implications for managers and policymakers
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.