Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Abstrak
The full acceptance of Deep Learning (DL) models in the clinical field is rather low with respect to the quantity of high-performing solutions reported in the literature. End users are particularly reluctant to rely on the opaque predictions of DL models. Uncertainty quantification methods have been proposed in the literature as a potential solution, to reduce the black-box effect of DL models and increase the interpretability and the acceptability of the result by the final user. In this review, we propose an overview of the existing methods to quantify uncertainty associated with DL predictions. We focus on applications to medical image analysis, which present specific challenges due to the high dimensionality of images and their variable quality, as well as constraints associated with real-world clinical routine. Moreover, we discuss the concept of structural uncertainty, a corpus of methods to facilitate the alignment of segmentation uncertainty estimates with clinical attention. We then discuss the evaluation protocols to validate the relevance of uncertainty estimates. Finally, we highlight the open challenges for uncertainty quantification in the medical field.
Artikel Ilmiah Terkait
Ling Huang Su Ruan Mengling Feng + 1 lainnya
9 Oktober 2023
The comprehensive integration of machine learning healthcare models within clinical practice remains suboptimal, notwithstanding the proliferation of high-performing solutions reported in the literature. A predominant factor hindering widespread adoption pertains to an insufficiency of evidence affirming the reliability of the aforementioned models. Recently, uncertainty quantification methods have been proposed as a potential solution to quantify the reliability of machine learning models and thus increase the interpretability and acceptability of the result. In this review, we offer a comprehensive overview of prevailing methods proposed to quantify uncertainty inherent in machine learning models developed for various medical image tasks. Contrary to earlier reviews that exclusively focused on probabilistic methods, this review also explores non-probabilistic approaches, thereby furnishing a more holistic survey of research pertaining to uncertainty quantification for machine learning models. Analysis of medical images with the summary and discussion on medical applications and the corresponding uncertainty evaluation protocols are presented, which focus on the specific challenges of uncertainty in medical image analysis. We also highlight some potential future research work at the end. Generally, this review aims to allow researchers from both clinical and technical backgrounds to gain a quick and yet in-depth understanding of the research in uncertainty quantification for medical image analysis machine learning models.
Changjian Shui Raghav Mehta T. Arbel
6 Maret 2023
Although deep learning (DL) models have shown great success in many medical image analysis tasks, deployment of the resulting models into real clinical contexts requires: (1) that they exhibit robustness and fairness across different sub-populations, and (2) that the confidence in DL model predictions be accurately expressed in the form of uncertainties. Unfortunately, recent studies have indeed shown significant biases in DL models across demographic subgroups (e.g., race, sex, age) in the context of medical image analysis, indicating a lack of fairness in the models. Although several methods have been proposed in the ML literature to mitigate a lack of fairness in DL models, they focus entirely on the absolute performance between groups without considering their effect on uncertainty estimation. In this work, we present the first exploration of the effect of popular fairness models on overcoming biases across subgroups in medical image analysis in terms of bottom-line performance, and their effects on uncertainty quantification. We perform extensive experiments on three different clinically relevant tasks: (i) skin lesion classification, (ii) brain tumour segmentation, and (iii) Alzheimer's disease clinical score regression. Our results indicate that popular ML methods, such as data-balancing and distributionally robust optimization, succeed in mitigating fairness issues in terms of the model performances for some of the tasks. However, this can come at the cost of poor uncertainty estimates associated with the model predictions. This tradeoff must be mitigated if fairness models are to be adopted in medical image analysis.
M. Shahzad Matthias Humt R. Bamler + 11 lainnya
7 Juli 2021
Over the last decade, neural networks have reached almost every field of science and become a crucial part of various real world applications. Due to the increasing spread, confidence in neural network predictions has become more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over- or under-confidence, i.e. are badly calibrated. To overcome this, many researchers have been working on understanding and quantifying uncertainty in a neural network’s prediction. As a result, different types and sources of uncertainty have been identified and various approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. For that, a comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and irreducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for calibrating neural networks, and give an overview of existing baselines and available implementations. Different examples from the wide spectrum of challenges in the fields of medical image analysis, robotics, and earth observation give an idea of the needs and challenges regarding uncertainties in the practical applications of neural networks. Additionally, the practical limitations of uncertainty quantification methods in neural networks for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
V. Cheplygina G. Varoquaux
12 April 2022
Research in computer analysis of medical images bears many promises to improve patients’ health. However, a number of systematic challenges are slowing down the progress of the field, from limitations of the data, such as biases, to research incentives, such as optimizing for publication. In this paper we review roadblocks to developing and assessing methods. Building our analysis on evidence from the literature and data challenges, we show that at every step, potential biases can creep in. On a positive note, we also discuss on-going efforts to counteract these problems. Finally we provide recommendations on how to further address these problems in the future.
Xiaolong Chen Yi Huang Weiting Xu + 3 lainnya
1 Oktober 2024
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.