State of the Art of Augmented Reality (AR) Capabilities for Civil Infrastructure Applications
Abstrak
Augmented Reality (AR) is a technology superimposing interactional virtual objects onto a real environment. Since the beginning of the millennium, AR technologies have shown rapid growth, with significant research publications in engineering and science. However, the civil infrastructure community has minimally implemented AR technologies to date. One of the challenges that civil engineers face when understanding and using AR is the lack of a classification of AR in the context of capabilities for civil infrastructure applications. Practitioners in civil infrastructure, like most engineering fields, prioritize understanding the level of maturity of a new technology before considering its adoption and field implementation. This paper compares the capabilities of sixteen AR Head-Mounted Devices (HMDs) available in the market since 2017, ranking them in terms of performance for civil infrastructure implementations. Finally, the authors recommend a development framework for practical AR interfaces with civil infrastructure and operations.
Artikel Ilmiah Terkait
Andrzej Szajna W. Woźniak M. Kostrzewski + 2 lainnya
22 Agustus 2020
Digitalization of production environment, also called Industry 4.0 (the term invented by Wahlster Wolfgang in Germany) is now one of the hottest topics in the computer science departments at universities and companies. One of the most significant topics in this area is augmented reality (AR). The interest in AR has grown especially after the introduction of the Microsoft HoloLens in 2016, which made this technology available for researchers and developers all around the world. It is divided into numerous subtopics and technologies. These wireless, see-through glasses give a very natural human-machine interface, with the possibility to present certain necessary information right in front of the user’s eyes as 3D virtual objects, in parallel with the observation of the real world, and the possibility to communicate with the system by simple gestures and speech. Scientists noted that in-depth studies connected to the effects of AR applications are presently sparse. In the first part of this paper, the authors recall the research from 2019 about the new method of manual wiring support with the AR glasses. In the second part, the study (tests) for this method carried out by the research team is described. The method was applied in the actual production environment with consideration of the actual production process, which is manual wiring of the industrial enclosures (control cabinets). Finally, authors deliberate on conclusions, technology’s imperfections, limitations, and future possible development of the presented solution.
Jaime Ruiz Julia Woodward
10 Januari 2022
Situational awareness is the perception and understanding of the surrounding environment. Maintaining situational awareness is vital for performance and error prevention in safety critical domains. Prior work has examined applying augmented reality (AR) to the context of improving situational awareness, but has mainly focused on the applicability of using AR rather than on information design. Hence, there is a need to investigate how to design the presentation of information, especially in AR headsets, to increase users situational awareness. We conducted a Systematic Literature Review to research how information is currently presented in AR, especially in systems that are being utilized for situational awareness. Comparing current presentations of information to existing design recommendations aided in identifying future areas of design. In addition, this survey further discusses opportunities and challenges in applying AR to increasing users situational awareness.
F. Termine Fabio Arena G. Pau + 1 lainnya
19 Februari 2022
Modern society is increasingly permeated by realities parallel to the real one. The so-called virtual reality is now part of both current habits and many activities carried out during the day. Virtual reality (VR) is, in turn, related to the concept of augmented reality (AR). It represents a technology still in solid expansion but which was created and imagined several decades ago. This paper presents an overview of augmented reality, starting from its conception, passing through its main applications, and providing essential information. Part of the article will be devoted to hardware and software components used in AR systems. The last part of the paper highlights the limitations related to the design of these systems, the shortcomings in this area, and the possible future fields of application of this extraordinary technological innovation.
N. M. Alzahrani F. Alfouzan
1 April 2022
Augmented Reality (AR) and cyber-security technologies have existed for several decades, but their growth and progress in recent years have increased exponentially. The areas of application for these technologies are clearly heterogeneous, most especially in purchase and sales, production, tourism, education, as well as social interaction (games, entertainment, communication). Essentially, these technologies are recognized worldwide as some of the pillars of the new industrial revolution envisaged by the industry 4.0 international program, and are some of the leading technologies of the 21st century. The ability to provide users with required information about processes or procedures directly into the virtual environment is archetypally the fundamental factor in considering AR as an effective tool for different fields. However, the advancement in ICT has also brought about a variety of cybersecurity challenges, with a depth of evidence anticipating policy, architectural, design, and technical solutions in this very domain. The specific applications of AR and cybersecurity technologies have been described in detail in a variety of papers, which demonstrate their potential in diverse fields. In the context of smart cities, however, there is a dearth of sources describing their varied uses. Notably, a scholarly paper that consolidates research on AR and cybersecurity application in this context is markedly lacking. Therefore, this systematic review was designed to identify, describe, and synthesize research findings on the application of AR and cybersecurity for smart cities. The review study involves filtering information of their application in this setting from three key databases to answer the predefined research question. The keynote part of this paper provides an in-depth review of some of the most recent AR and cybersecurity applications for smart cities, emphasizing potential benefits, limitations, as well as open issues which could represent new challenges for the future. The main finding that we found is that there are five main categories of these applications for smart cities, which can be classified according to the main articles, such as tourism, monitoring, system management, education, and mobility. Compared with the general literature on smart cities, tourism, monitoring, and maintenance AR applications appear to attract more scholarly attention.
J. Angelopoulos D. Mourtzis V. Siatras
8 Maret 2020
In the realm of the current industrial revolution, interesting innovations as well as new techniques are constantly being introduced by offering fertile ground for further investigation and improvement in the industrial engineering domain. More specifically, cutting-edge digital technologies in the field of Extended Reality (XR) have become mainstream including Augmented Reality (AR). Furthermore, Cloud Computing has enabled the provision of high-quality services, especially in the controversial field of maintenance. However, since modern machines are becoming more complex, maintenance must be carried out from experienced and well-trained personnel, while overseas support is timely and financially costly. Although AR is a back-bone technology facilitating the development of robust maintenance support tools, they are limited to the provision of predefined scenarios, covering only a limited number of scenarios. This research work aims to address this emerging challenge with the design and development of a framework, for the support of remote maintenance and repair operation based on AR, by creating suitable communication channels between the shop-floor technicians and the expert engineers who are utilizing real-time feedback from the operator’s field of view. The applicability of the developed framework is tested in vitro in a lab-based machine shop and in a real-life industrial scenario.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.