PentestGPT: An LLM-empowered Automatic Penetration Testing Tool
Abstrak
Penetration testing, a crucial industrial practice for ensuring system security, has traditionally resisted automation due to the extensive expertise required by human professionals. Large Language Models (LLMs) have shown significant advancements in various domains, and their emergent abilities suggest their potential to revolutionize industries. In this research, we evaluate the performance of LLMs on real-world penetration testing tasks using a robust benchmark created from test machines with platforms. Our findings reveal that while LLMs demonstrate proficiency in specific sub-tasks within the penetration testing process, such as using testing tools, interpreting outputs, and proposing subsequent actions, they also encounter difficulties maintaining an integrated understanding of the overall testing scenario. In response to these insights, we introduce PentestGPT, an LLM-empowered automatic penetration testing tool that leverages the abundant domain knowledge inherent in LLMs. PentestGPT is meticulously designed with three self-interacting modules, each addressing individual sub-tasks of penetration testing, to mitigate the challenges related to context loss. Our evaluation shows that PentestGPT not only outperforms LLMs with a task-completion increase of 228.6\% compared to the \gptthree model among the benchmark targets but also proves effective in tackling real-world penetration testing challenges. Having been open-sourced on GitHub, PentestGPT has garnered over 4,700 stars and fostered active community engagement, attesting to its value and impact in both the academic and industrial spheres.
Artikel Ilmiah Terkait
Wei Ruan Dawei Sun Zhenyuan Li + 5 lainnya
7 November 2024
Penetration testing is a critical technique for identifying security vulnerabilities, traditionally performed manually by skilled security specialists. This complex process involves gathering information about the target system, identifying entry points, exploiting the system, and reporting findings. Despite its effectiveness, manual penetration testing is time-consuming and expensive, often requiring significant expertise and resources that many organizations cannot afford. While automated penetration testing methods have been proposed, they often fall short in real-world applications due to limitations in flexibility, adaptability, and implementation. Recent advancements in large language models (LLMs) offer new opportunities for enhancing penetration testing through increased intelligence and automation. However, current LLM-based approaches still face significant challenges, including limited penetration testing knowledge and a lack of comprehensive automation capabilities. To address these gaps, we propose PentestAgent, a novel LLM-based automated penetration testing framework that leverages the power of LLMs and various LLM-based techniques like Retrieval Augmented Generation (RAG) to enhance penetration testing knowledge and automate various tasks. Our framework leverages multi-agent collaboration to automate intelligence gathering, vulnerability analysis, and exploitation stages, reducing manual intervention. We evaluate PentestAgent using a comprehensive benchmark, demonstrating superior performance in task completion and overall efficiency. This work significantly advances the practical applicability of automated penetration testing systems.
Manil Shrestha Rick Console Edward Kim + 1 lainnya
22 Oktober 2024
Hacking poses a significant threat to cybersecurity, inflicting billions of dollars in damages annually. To mitigate these risks, ethical hacking, or penetration testing, is employed to identify vulnerabilities in systems and networks. Recent advancements in large language models (LLMs) have shown potential across various domains, including cybersecurity. However, there is currently no comprehensive, open, automated, end-to-end penetration testing benchmark to drive progress and evaluate the capabilities of these models in security contexts. This paper introduces a novel open benchmark for LLM-based automated penetration testing, addressing this critical gap. We first evaluate the performance of LLMs, including GPT-4o and LLama 3.1-405B, using the state-of-the-art PentestGPT tool. Our findings reveal that while LLama 3.1 demonstrates an edge over GPT-4o, both models currently fall short of performing end-to-end penetration testing even with some minimal human assistance. Next, we advance the state-of-the-art and present ablation studies that provide insights into improving the PentestGPT tool. Our research illuminates the challenges LLMs face in each aspect of Pentesting, e.g. enumeration, exploitation, and privilege escalation. This work contributes to the growing body of knowledge on AI-assisted cybersecurity and lays the foundation for future research in automated penetration testing using large language models.
Yanru He BenLong Wu Neng H. Yu + 5 lainnya
2 November 2024
Penetration testing is essential to ensure Web security, which can detect and fix vulnerabilities in advance, and prevent data leakage and serious consequences. The powerful inference capabilities of large language models (LLMs) have made significant progress in various fields, and the development potential of LLM-based agents can revolutionize the cybersecurity penetration testing industry. In this work, we establish a comprehensive end-to-end penetration testing benchmark using a real-world penetration testing environment to explore the capabilities of LLM-based agents in this domain. Our results reveal that the agents are familiar with the framework of penetration testing tasks, but they still face limitations in generating accurate commands and executing complete processes. Accordingly, we summarize the current challenges, including the difficulty of maintaining the entire message history and the tendency for the agent to become stuck. Based on the above insights, we propose a Penetration testing State Machine (PSM) that utilizes the Finite State Machine (FSM) methodology to address these limitations. Then, we introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs, which utilizes the inherent inference ability of LLM and the constraint framework of state machines. Our evaluation results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model and improves the task completion rate from 22% to 41% on the benchmark target. Compared with the baseline framework and manual work, AutoPT also reduces time and economic costs further. Hence, our AutoPT has facilitated the development of automated penetration testing and significantly impacted both academia and industry.
David Imolai Lajos Muzsai András Lukács
2 Desember 2024
We introduce HackSynth, a novel Large Language Model (LLM)-based agent capable of autonomous penetration testing. HackSynth's dual-module architecture includes a Planner and a Summarizer, which enable it to generate commands and process feedback iteratively. To benchmark HackSynth, we propose two new Capture The Flag (CTF)-based benchmark sets utilizing the popular platforms PicoCTF and OverTheWire. These benchmarks include two hundred challenges across diverse domains and difficulties, providing a standardized framework for evaluating LLM-based penetration testing agents. Based on these benchmarks, extensive experiments are presented, analyzing the core parameters of HackSynth, including creativity (temperature and top-p) and token utilization. Multiple open source and proprietary LLMs were used to measure the agent's capabilities. The experiments show that the agent performed best with the GPT-4o model, better than what the GPT-4o's system card suggests. We also discuss the safety and predictability of HackSynth's actions. Our findings indicate the potential of LLM-based agents in advancing autonomous penetration testing and the importance of robust safeguards. HackSynth and the benchmarks are publicly available to foster research on autonomous cybersecurity solutions.
Ibrahim Alshehri Majed Bamardouf Alaqsa Akbar + 2 lainnya
31 Agustus 2024
The increasing complexity and scale of modern digital environments have exposed significant gaps in traditional cybersecurity penetration testing methods, which are often time-consuming, labor-intensive, and unable to rapidly adapt to emerging threats. There is a critical need for an automated solution that can efficiently identify and exploit vulnerabilities across diverse systems without extensive human intervention. BreachSeek addresses this challenge by providing an AI-driven multi-agent software platform that leverages Large Language Models (LLMs) integrated through LangChain and LangGraph in Python. This system enables autonomous agents to conduct thorough penetration testing by identifying vulnerabilities, simulating a variety of cyberattacks, executing exploits, and generating comprehensive security reports. In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks, demonstrating its practical effectiveness. Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.