DOI: 10.1145/3511808.3557501
Terbit pada 17 Oktober 2022 Pada International Conference on Information and Knowledge Management

Fairness of Machine Learning in Search Engines

Yi Fang Mikhail Yurochkin Hongfu Liu + 1 penulis

Abstrak

Fairness has gained increasing importance in a variety of AI and machine learning contexts. As one of the most ubiquitous applications of machine learning, search engines mediate much of the information experiences of members of society. Consequently, understanding and mitigating potential algorithmic unfairness in search have become crucial for both users and systems. In this tutorial, we will introduce the fundamentals of fairness in machine learning, for both supervised learning such as classification and ranking, and unsupervised learning such as clustering. We will then present the existing work on fairness in search engines, including the fairness definitions, evaluation metrics, and taxonomies of methodologies. This tutorial will help orient information retrieval researchers to algorithmic fairness, provide an introduction to the growing literature on this topic, and gathering researchers and practitioners interested in this research direction.

Artikel Ilmiah Terkait

Fairness in Ranking, Part II: Learning-to-Rank and Recommender Systems

Julia Stoyanovich Meike Zehlike Ke Yang

11 Mei 2022

In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithms, information retrieval, and recommender systems communities. In this survey, we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to help meet those objectives or identify trade-offs. In the first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this article, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods.

A Review on Fairness in Machine Learning

E. Shmueli Dana Pessach

3 Februari 2022

An increasing number of decisions regarding the daily lives of human beings are being controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging from healthcare, transportation, and education to college admissions, recruitment, provision of loans, and many more realms. Since they now touch on many aspects of our lives, it is crucial to develop ML algorithms that are not only accurate but also objective and fair. Recent studies have shown that algorithmic decision making may be inherently prone to unfairness, even when there is no intention for it. This article presents an overview of the main concepts of identifying, measuring, and improving algorithmic fairness when using ML algorithms, focusing primarily on classification tasks. The article begins by discussing the causes of algorithmic bias and unfairness and the common definitions and measures for fairness. Fairness-enhancing mechanisms are then reviewed and divided into pre-process, in-process, and post-process mechanisms. A comprehensive comparison of the mechanisms is then conducted, toward a better understanding of which mechanisms should be used in different scenarios. The article ends by reviewing several emerging research sub-fields of algorithmic fairness, beyond classification.

Fairness in recommender systems: research landscape and future directions

Yashar Deldjoo Dario Zanzonelli Alejandro BellogĂ­n + 2 lainnya

23 Mei 2022

Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.

Fairness in Machine Learning: A Survey

C. Haas Simon Caton

4 Oktober 2020

When Machine Learning technologies are used in contexts that affect citizens, companies as well as researchers need to be confident that there will not be any unexpected social implications, such as bias towards gender, ethnicity, and/or people with disabilities. There is significant literature on approaches to mitigate bias and promote fairness, yet the area is complex and hard to penetrate for newcomers to the domain. This article seeks to provide an overview of the different schools of thought and approaches that aim to increase the fairness of Machine Learning. It organizes approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas. Although much of the literature emphasizes binary classification, a discussion of fairness in regression, recommender systems, and unsupervised learning is also provided along with a selection of currently available open source libraries. The article concludes by summarizing open challenges articulated as five dilemmas for fairness research.

Fairness in Recommender Systems: Evaluation Approaches and Assurance Strategies

Guandong Xu Jiangxia Cao Yao Wu

12 Juni 2023

With the wide application of recommender systems, the potential impacts of recommender systems on customers, item providers and other parties have attracted increasing attention. Fairness, which is the quality of treating people equally, is also becoming important in recommender system evaluation and algorithm design. Therefore, in the past years, there has been a growing interest in fairness measurement and assurance in recommender systems. Although there are several reviews on related topics, such as fairness in machine learning and debias in recommender systems, they do not present a systematic view on fairness in recommender systems, which is context aware and has a multi-sided meaning. Therefore, in this review, the concept of fairness is discussed in detail in the various contexts of recommender systems. Specifically, a comprehensive framework to classify fairness metrics is proposed from four dimensions, i.e., Fairness for Whom, Demographic Unit, Time Frame, and Quantification Method. Then the strategies for eliminating unfairness in recommendations, fairness in different recommendation tasks and datasets are reviewed and summarized. Finally, the challenges and future work are discussed.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.