Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends
Abstrak
The concept of smart cities has gained significant momentum in science and policy circles over the past decade. This study aims to provide an overview of the structure and trends in the literature on smart cities. Bibliometric analysis and science mapping techniques using VOSviewer and CiteSpace are used to identify the thematic focus of over 5000 articles indexed in the Web of Science since 1991. In addition to providing insights into the thematic evolution of the field, the three-decade study period is divided into two sub-periods (1991–2015 and 2016–2021). While splitting the dataset into more sub-periods would have been desirable, we decided to only examine two sub-periods as only very few papers have been published until 2010. The annual number of publications has progressively increased since then, with a surge in the annual number of publications observable from 2015 onwards. The thematic analysis showed that the intellectual base of the field has been very limited during the first period, but has expanded significantly since 2015. Over time, some thematic evolutions, such as further attention to linkages to climate change and resilience, and more emphasis on security and privacy issues, have been made. The thematic analysis shows that existing research on smart cities is dominated by either conceptual issues or underlying technical aspects. It is, therefore, essential to do more research on the implementation of smart cities and actual and/or potential contributions of smart cities to solving societal issues. In addition to elaborating on thematic focus, the study also highlights major authors, journals, references, countries, and institutions that have contributed to the development of the smart cities literature.
Artikel Ilmiah Terkait
Tarana Singh A. Solanki S. Sharma + 2 lainnya
2022
Smart City has been an emerging research domain for Government, Businesses, and researchers in the last few years. The Indian government is also interested and investing lots of funds to develop smart cities. These cities are technology-based and require interdisciplinary research and development for successful implementation. Over the last few decades, various technological interventions have created a tendency to provide smart everyday objects to make human life more comfortable. The emergence of the smart city paradigm is a response to creating a future city that guarantees the well-being and rights of its citizens from the perspective of industrial development: industry, urban planning, environment, and sustainable development. There are several subdomains in the smart city for the research. To work with the different subdomains in a smart city, proper guidance about the background of the smart city is required. This research paper is a guide for the same. This research paper represents a systematic literature review of the smart city domain. This paper carries out a systematic review of research papers published in various well-reputed journals like IEEE, Springer, Elsevier, etc., between 2011 and 2021. This paper will help the government, businesses, and researchers aiming to enhance the smart city concept. Initially, this paper discusses the origin and emergence of this concept, followed by a few definitions and characteristics with the real roadmap and primary supporting pillars of the smart city. This paper discusses a typical architecture having different layers like Sensing, Transportation, Data Management, and Application Layers. There are various supporting technologies and platforms for the smart city; hence implementations are impossible without these technologies and media. This research paper discusses different components of the smart city. A broad literature survey is being done to observe various challenges, opportunities, and future trends in the smart city. This research paper can guide the researchers and provide the research direction in the smart city domain.
Shamneesh Sharma In-Ho Ra Isha Batra + 3 lainnya
2022
Smart cities are a current worldwide topic requiring much scientific investigation. This research instigates the necessity of an organized review to a heedful insight of the research trends and patterns prevailing in this domain. The string is formulated to extract the corpus from Scopus largest database of publications. The corpus of 8320 articles published from 2010 to 2022 is processed using Latent Dirichlet Allocation. Two, five, and ten topics have been extracted to provide the recent trends for IoT in smart cities. There has been an increased recognition that more attention needs to be paid to the area of smart cities so a complete overview of the topic of smart cities research, including the most prominent nations (institutions, sources, and authors) and noteworthy research directions has been presented in this paper. The scientific collaboration across countries (regions), organizations, and authors has also been widely discussed. A detailed and comprehensive overview and visualization of the trends and research patterns used to integrate the Internet of Things in Smart Cities. This data based experimental study signifies a roadmap of the research trends in Smart Cities by implementing topic modeling technique that has never been used in this domain. Based upon the topic modeling using LDA, authors have formulated three research questions and answered those question based on the in-depth research. At the end this study concludes the areas suggested are at the growing phase and need more insight for their growth.
S. Bibri Ayyoob Sharifi Alahi Alexandre + 1 lainnya
5 April 2023
There have recently been intensive efforts aimed at addressing the challenges of environmental degradation and climate change through the applied innovative solutions of AI, IoT, and Big Data. Given the synergistic potential of these advanced technologies, their convergence is being embraced and leveraged by smart cities in an attempt to make progress toward reaching the environmental targets of sustainable development goals under what has been termed “environmentally sustainable smart cities.” This new paradigm of urbanism represents a significant research gap in and of itself. To fill this gap, this study explores the key research trends and driving factors of environmentally sustainable smart cities and maps their thematic evolution. Further, it examines the fragmentation, amalgamation, and transition of their underlying models of urbanism as well as their converging AI, IoT, and Big Data technologies and solutions. It employs and combines bibliometric analysis and evidence synthesis methods. A total of 2,574 documents were collected from the Web of Science database and compartmentalized into three sub-periods: 1991–2015, 2016–2019, and 2020–2021. The results show that environmentally sustainable smart cities are a rapidly growing trend that markedly escalated during the second and third periods—due to the acceleration of the digitalization and decarbonization agendas—thanks to COVID-19 and the rapid advancement of data-driven technologies. The analysis also reveals that, while the overall priority research topics have been dynamic over time—some AI models and techniques and environmental sustainability areas have received more attention than others. The evidence synthesized indicates that the increasing criticism of the fragmentation of smart cities and sustainable cities, the widespread diffusion of the SDGs agenda, and the dominance of advanced ICT have significantly impacted the materialization of environmentally sustainable smart cities, thereby influencing the landscape and dynamics of smart cities. It also suggests that the convergence of AI, IoT, and Big Data technologies provides new approaches to tackling the challenges of environmental sustainability. However, these technologies involve environmental costs and pose ethical risks and regulatory conundrums. The findings can inform scholars and practitioners of the emerging data-driven technology solutions of smart cities, as well as assist policymakers in designing and implementing responsive environmental policies.
E. Papageorgiou S. Trang Ilja Nastjuk
28 November 2022
In the last two decades, the concept of smart cities has attracted significant research and policy attention. Despite its extensive discussion in literature, the term smart city is a fuzzy concept (Albino et al., 2015; Angelidou, 2014; Anthopoulos, 2015). It commonly refers to environments in which information and communication technologies (ICTs) are utilized to offer innovative services to citizens in order to enhance their well-being and to stimulate sustainable economic growth (Yigitcanlar et al., 2018). According to Giffinger et al. (2007), the key defining characteristics of smart cities include smart economy, smart people, smart governance, smart mobility, smart environment, and smart living, addressing key topics such as economic competitiveness, educational level of citizens, quality of social interactions, flexibility of labor market, governmental strategies, innovative transportation systems, sustainable resource management, or public safety. However, since the introduction of the term smart cities in the ’90 s, numerous perspectives on smart cities have emerged (e.g., Chourabi et al., 2012; Dameri & Cocchia, 2013; Hosseini et al., 2018; Yigitcanlar et al., 2018). One predominant perspective relates to the role of smart ICTs to improve the quality of citizens’ life (e.g., Bifulco et al., 2016; Dameri, 2017; Ferro et al., 2013; Gade, 2019; Van Dinh et al., 2020). Smart ICTs are wireless, embedded in objects, and record the environment using sensors (Yigitcanlar & Lee, 2014). They provide the critical infrastructure for more intelligent and interconnected solutions in areas such as healthcare, real estate, utilities, transportation, public safety, and administration (Washburn et al., 2009). In the energy grid domain, for example, smart ICTs help collect and share consumption data to optimize energy management (Farmanbar et al., 2019). In the transportation domain, smart ICTs enable safe, socially inclusive, and sustainable multi-modal transportation networks, which allow citizens to travel with ease (Herrenkind et al., 2019; Lembcke et al., 2021; Nastjuk et al., 2020; Nikitas et al., 2017; Rocha et al., 2020; Trang et al., 2015). In the building domain, smart ICTs can help to establish so-called “zero energy buildings” by significantly reducing the energy demand during the lifecycle of residential and commercial buildings (Kylili & Fokaides, 2015). In the healthcare domain, smart wearable devices can, for example, cater for remote diagnosis, medical prescriptions, and treatment of patients (Ghazal et al., 2021) or allow for the effective monitoring of public health (Trang et al., 2020). In the education domain, smart ICTs promote a more engaged learning experience in which learners can “learn at anytime, anywhere, in any way and at any pace” (Liu et al., 2017, p. 33). The importance of ICTs as a key driver for smart cities varies in the aforementioned application fields. In domains such as energy or transportation management, smart ICTs are essential enablers and require big data processing capabilities, while in domains such as education or public administration, smart ICTs have a more limited role where processing large volumes of data in real time is usually not required (Neirotti et al., 2014). Apart of the relevance of ICTs to envision smart cities, a significant body of literature has argued extensively about This article is part of the Topical Collection on Smart Cities Smart governance models for future cities.
Anestis Kousis Christos Tjortjis
2021
Smart cities connect people and places using innovative technologies such as Data Mining (DM), Machine Learning (ML), big data, and the Internet of Things (IoT). This paper presents a bibliometric analysis to provide a comprehensive overview of studies associated with DM technologies used in smart cities applications. The study aims to identify the main DM techniques used in the context of smart cities and how the research field of DM for smart cities evolves over time. We adopted both qualitative and quantitative methods to explore the topic. We used the Scopus database to find relative articles published in scientific journals. This study covers 197 articles published over the period from 2013 to 2021. For the bibliometric analysis, we used the Biliometrix library, developed in R. Our findings show that there is a wide range of DM technologies used in every layer of a smart city project. Several ML algorithms, supervised or unsupervised, are adopted for operating the instrumentation, middleware, and application layer. The bibliometric analysis shows that DM for smart cities is a fast-growing scientific field. Scientists from all over the world show a great interest in researching and collaborating on this interdisciplinary scientific field.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.