Disruptive Technologies in Smart Cities: A Survey on Current Trends and Challenges
Abstrak
This paper aims to explore the most important disruptive technologies in the development of the smart city. Every smart city is a dynamic and complex system that attracts an increasing number of people in search of the benefits of urbanisation. According to the United Nations, 68% of the world population will be living in cities by 2050. This creates challenges related to limited resources and infrastructure (energy, water, transportation system, etc.). To solve these problems, new and emerging technologies are created. Internet of Things, big data, blockchain, artificial intelligence, data analytics, and machine and cognitive learning are just a few examples. They generate changes in key sectors such as health, energy, transportation, education, public safety, etc. Based on a comprehensive literature review, we identified the main disruptive technologies in smart cities. Applications that integrate these technologies help cities to be smarter and offer better living conditions and easier access to products and services for residents. Disruptive technologies are generally considered key drivers in smart city progress. This paper presents these disruptive technologies, their applications in smart cities, the most important challenges and critics.
Artikel Ilmiah Terkait
Alistair Barros Moumita Chanda Supti Barman + 5 lainnya
28 November 2022
Smart cities can be complemented by fusing various components and incorporating recent emerging technologies. IoT communications are crucial to smart city operations, which are designed to support the concept of a “Smart City” by utilising the most cutting-edge communication technologies to enhance city administration and resident services. Smart cities have been outfitted with numerous IoT-based gadgets; the Internet of Things is a modular method to integrate various sensors with all ICT technologies. This paper provides an overview of smart cities’ concepts, characteristics, and applications. We thoroughly investigate smart city applications, challenges, and possibilities with solutions in recent technological trends and perspectives, such as machine learning and blockchain. We discuss cloud and fog IoT ecosystems in the in capacity of IoT devices, architectures, and machine learning approaches. In addition we integrate security and privacy aspects, including blockchain applications, towards more trustworthy and resilient smart cities. We also highlight the concepts, characteristics, and applications of smart cities and provide a conceptual model of the smart city mega-events framework. Finally, we outline the impact of recent emerging technologies’ implications on challenges, applications, and solutions for futuristic smart cities.
A. Ateya Muhammed ElAffendi A. El-latif + 2 lainnya
9 Desember 2023
The concept of smart cities, which aim to enhance the quality of urban life through innovative technologies and policies, has gained significant momentum in recent years. As we approach the era of next-generation smart cities, it becomes crucial to explore the key enabling technologies that will shape their development. This work reviews the leading technologies driving the future of smart cities. The work begins by introducing the main requirements of different smart city applications; then, the enabling technologies are presented. This work highlights the transformative potential of the Internet of things (IoT) to facilitate data collection and analysis to improve urban infrastructure and services. As a complementary technology, distributed edge computing brings computational power closer to devices, reducing the reliance on centralized data centers. Another key technology is virtualization, which optimizes resource utilization, enabling multiple virtual environments to run efficiently on shared hardware. Software-defined networking (SDN) emerges as a pivotal technology that brings flexibility and scalability to smart city networks, allowing for dynamic network management and resource allocation. Artificial intelligence (AI) is another approach for managing smart cities by enabling predictive analytics, automation, and smart decision making based on vast amounts of data. Lastly, the blockchain is introduced as a promising approach for smart cities to achieve the required security. The review concludes by identifying potential research directions to address the challenges and complexities brought about by integrating these key enabling technologies.
Jaeseung Song Luis Sánchez M. Bauer
30 Juni 2021
For the last decade the Smart City concept has been under development, fostered by the growing urbanization of the world’s population and the need to handle the challenges that such a scenario raises. During this time many Smart City projects have been executed–some as proof-of-concept, but a growing number resulting in permanent, production-level deployments, improving the operation of the city and the quality of life of its citizens. Thus, Smart Cities are still a highly relevant paradigm which needs further development before it reaches its full potential and provides robust and resilient solutions. In this paper, the focus is set on the Internet of Things (IoT) as an enabling technology for the Smart City. In this sense, the paper reviews the current landscape of IoT-enabled Smart Cities, surveying relevant experiences and city initiatives that have embedded IoT within their city services and how they have generated an impact. The paper discusses the key technologies that have been developed and how they are contributing to the realization of the Smart City. Moreover, it presents some challenges that remain open ahead of us and which are the initiatives and technologies that are under development to tackle them.
S. Hashim Mohsen Marjani A. Sali + 3 lainnya
2021
The notion of smart cities has remained under evolution as its global implementations are challenged by numerous technological, economic, and governmental obstacles. Moreover, the synergy of the Internet of Things (IoT) and big data technologies could result in promising horizons in terms of smart city development which has not been explored yet. Thus, the current research aims to address the essence of smart cities. To this end, first, the concept of smart cities is briefly overviewed; then, their properties and specifications as well as generic architecture, compositions, and real-world implementations are addressed. Furthermore, possible challenges and opportunities in the field of smart cities are described. Numerous issues and challenges such as analytics and using big data in smart cities introduced in this study offers an enhancement in developing applications of the above-mentioned technologies. Hence, this study paves the way for future research on the issues and challenges of big data applications in smart cities.
A. Syed Adel Said Elmaghraby Anup Kumar + 1 lainnya
30 Maret 2021
Internet of Things (IoT) is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The IoT for Smart Cities has many different domains and draws upon various underlying systems for its operation. In this paper, we provide a holistic coverage of the Internet of Things in Smart Cities. We start by discussing the fundamental components that make up the IoT based Smart City landscape followed by the technologies that enable these domains to exist in terms of architectures utilized, networking technologies used as well as the Artificial Algorithms deployed in IoT based Smart City systems. This is then followed up by a review of the most prevalent practices and applications in various Smart City domains. Lastly, the challenges that deployment of IoT systems for smart cities encounter along with mitigation measures.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
3 sitasiAn Enhanced Analysis of Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function
Sameer Alani Ayad Ghany Ismaeel + 5 lainnya
3 Oktober 2023
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.
Smart Cities from the Perspective of Systems
Athar Mansoor Khansa Rasheed + 3 lainnya
8 Juni 2022
Modern cities are complex adaptive systems in which there is a lot of dependency and interaction between the various stakeholders, components, and subsystems. The use of digital Information and Communications Technology (ICT) has opened up the vision of smart cities in which the city dwellers can have a better quality of life and the city can be better organized and managed. The deployment of ICT solutions, however, does not automatically or invariably improve the quality of living of the citizens. Analyzing cities as complex systems with various interacting sub-systems can help us understand urban dynamics and the fate of smart cities. We will be able to analyze various policy interventions and ascertain their effectiveness and anticipate potential unintended consequences. In this paper, we discuss how smart cities can be viewed through the lens of systems thinking and complex systems and provide a comprehensive review of related techniques and methods. Along with highlighting the science of cities in light of historic urban modeling and urban dynamics, we focus on shedding light on the smart city complex systems. Finally, we will describe the various challenges of smart cities, discuss the limitations of existing models, and identify promising future directions of work.
A Predictive Vehicle Ride Sharing Recommendation System for Smart Cities Commuting
Theodoros Anagnostopoulos
27 Januari 2021
Smart Cities (or Cities 2.0) are an evolution in citizen habitation. In such cities, transport commuting is changing rapidly with the proliferation of contemporary vehicular technology. New models of vehicle ride sharing systems are changing the way citizens commute in their daily movement schedule. The use of a private vehicle per single passenger transportation is no longer viable in sustainable Smart Cities (SC) because of the vehicles’ resource allocation and urban pollution. The current research on car ride sharing systems is widely expanding in a range of contemporary technologies, however, without covering a multidisciplinary approach. In this paper, the focus is on performing a multidisciplinary research on car riding systems taking into consideration personalized user mobility behavior by providing next destination prediction as well as a recommender system based on riders’ personalized information. Specifically, it proposes a predictive vehicle ride sharing system for commuting, which has impact on the SC green ecosystem. The adopted system also provides a recommendation to citizens to select the persons they would like to commute with. An Artificial Intelligence (AI)-enabled weighted pattern matching model is used to assess user movement behavior in SC and provide the best predicted recommendation list of commuting users. Citizens are then able to engage a current trip to next destination with the more suitable user provided by the list. An experimented is conducted with real data from the municipality of New Philadelphia, in SC of Athens, Greece, to implement the proposed system and observe certain user movement behavior. The results are promising for the incorporation of the adopted system to other SCs.