DOI: 10.1055/s-0041-1725137
Terbit pada 19 Maret 2021 Pada Seminars in neurology

Brain–Computer Interfaces in Neurorecovery and Neurorehabilitation

L. Hochberg David J. Lin Michael J. Young

Abstrak

Abstract Recent advances in brain–computer interface technology to restore and rehabilitate neurologic function aim to enable persons with disabling neurologic conditions to communicate, interact with the environment, and achieve other key activities of daily living and personal goals. Here we evaluate the principles, benefits, challenges, and future directions of brain–computer interfaces in the context of neurorehabilitation. We then explore the clinical translation of these technologies and propose an approach to facilitate implementation of brain–computer interfaces for persons with neurologic disease.

Artikel Ilmiah Terkait

Brain–computer interfaces: the innovative key to unlocking neurological conditions

Qiang Xu Hongyu Zhang Shuhuai Zou + 8 lainnya

14 Agustus 2024

Neurological disorders such as Parkinson’s disease, stroke, and spinal cord injury can pose significant threats to human mortality, morbidity, and functional independence. Brain–Computer Interface (BCI) technology, which facilitates direct communication between the brain and external devices, emerges as an innovative key to unlocking neurological conditions, demonstrating significant promise in this context. This comprehensive review uniquely synthesizes the latest advancements in BCI research across multiple neurological disorders, offering an interdisciplinary perspective on both clinical applications and emerging technologies. We explore the progress in BCI research and its applications in addressing various neurological conditions, with a particular focus on recent clinical studies and prospective developments. Initially, the review provides an up-to-date overview of BCI technology, encompassing its classification, operational principles, and prevalent paradigms. It then critically examines specific BCI applications in movement disorders, disorders of consciousness, cognitive and mental disorders, as well as sensory disorders, highlighting novel approaches and their potential impact on patient care. This review reveals emerging trends in BCI applications, such as the integration of artificial intelligence and the development of closed-loop systems, which represent significant advancements over previous technologies. The review concludes by discussing the prospects and directions of BCI technology, underscoring the need for interdisciplinary collaboration and ethical considerations. It emphasizes the importance of prioritizing bidirectional and high-performance BCIs, areas that have been underexplored in previous reviews. Additionally, we identify crucial gaps in current research, particularly in long-term clinical efficacy and the need for standardized protocols. The role of neurosurgery in spearheading the clinical translation of BCI research is highlighted. Our comprehensive analysis presents BCI technology as an innovative key to unlocking neurological disorders, offering a transformative approach to diagnosing, treating, and rehabilitating neurological conditions, with substantial potential to enhance patients’ quality of life and advance the field of neurotechnology.

The current state of electrocorticography-based brain-computer interfaces.

D. Hermes K. Miller N. Staff

1 Juli 2020

Brain-computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.

Evaluating the clinical benefit of brain-computer interfaces for control of a personal computer

D. Putrino Adam Fry M. Escalón + 3 lainnya

24 Maret 2022

Brain-computer interfaces (BCIs) enabling the control of a personal computer could provide myriad benefits to individuals with disabilities including paralysis. However, to realize this potential, these BCIs must gain regulatory approval and be made clinically available beyond research participation. Therefore, a transition from engineering-oriented to clinically oriented outcome measures will be required in the evaluation of BCIs. This review examined how to assess the clinical benefit of BCIs for the control of a personal computer. We report that: (a) a variety of different patient-reported outcome measures can be used to evaluate improvements in how a patient feels, and we offer some considerations that should guide instrument selection. (b) Activities of daily living can be assessed to demonstrate improvements in how a patient functions, however, new instruments that are sensitive to increases in functional independence via the ability to perform digital tasks may be needed. (c) Benefits to how a patient survives has not previously been evaluated but establishing patient-initiated communication channels using BCIs might facilitate quantifiable improvements in health outcomes.

Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review

Sofia Ouhbi Abdelkader Nasreddine Belkacem N. Jamil + 1 lainnya

1 Juli 2021

Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain–computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.

Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review

S. Mazzoleni M. C. Cuervo Daniela Camargo-Vargas

24 Juni 2021

In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

2 sitasi

Applying the IEEE BRAIN neuroethics framework to intra-cortical brain-computer interfaces

Jennifer French Denis Larrivee + 5 lainnya

27 Maret 2024

Objective. Brain-computer interfaces (BCIs) are neuroprosthetic devices that allow for direct interaction between brains and machines. These types of neurotechnologies have recently experienced a strong drive in research and development, given, in part, that they promise to restore motor and communication abilities in individuals experiencing severe paralysis. While a rich literature analyzes the ethical, legal, and sociocultural implications (ELSCI) of these novel neurotechnologies, engineers, clinicians and BCI practitioners often do not have enough exposure to these topics. Approach. Here, we present the IEEE Neuroethics Framework, an international, multiyear, iterative initiative aimed at developing a robust, accessible set of considerations for diverse stakeholders. Main results. Using the framework, we provide practical examples of ELSCI considerations for BCI neurotechnologies. We focus on invasive technologies, and in particular, devices that are implanted intra-cortically for medical research applications. Significance. We demonstrate the utility of our framework in exposing a wide range of implications across different intra-cortical BCI technology modalities and conclude with recommendations on how to utilize this knowledge in the development and application of ethical guidelines for BCI neurotechnologies.

Advances in electrode interface materials and modification technologies for brain-computer interfaces

Yunke Jiao Miao Lei + 3 lainnya

28 Desember 2023

ABSTRACT Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.