DOI: 10.1136/medethics-2020-106820
Terbit pada 18 Maret 2021 Pada Journal of Medical Ethics

Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI

J. M. Durán K. Jongsma

Abstrak

The use of black box algorithms in medicine has raised scholarly concerns due to their opaqueness and lack of trustworthiness. Concerns about potential bias, accountability and responsibility, patient autonomy and compromised trust transpire with black box algorithms. These worries connect epistemic concerns with normative issues. In this paper, we outline that black box algorithms are less problematic for epistemic reasons than many scholars seem to believe. By outlining that more transparency in algorithms is not always necessary, and by explaining that computational processes are indeed methodologically opaque to humans, we argue that the reliability of algorithms provides reasons for trusting the outcomes of medical artificial intelligence (AI). To this end, we explain how computational reliabilism, which does not require transparency and supports the reliability of algorithms, justifies the belief that results of medical AI are to be trusted. We also argue that several ethical concerns remain with black box algorithms, even when the results are trustworthy. Having justified knowledge from reliable indicators is, therefore, necessary but not sufficient for normatively justifying physicians to act. This means that deliberation about the results of reliable algorithms is required to find out what is a desirable action. Thus understood, we argue that such challenges should not dismiss the use of black box algorithms altogether but should inform the way in which these algorithms are designed and implemented. When physicians are trained to acquire the necessary skills and expertise, and collaborate with medical informatics and data scientists, black box algorithms can contribute to improving medical care.

Artikel Ilmiah Terkait

Ethics and governance of trustworthy medical artificial intelligence

Zong-Ming Zhang Jie Zhang

13 Januari 2023

Background The growing application of artificial intelligence (AI) in healthcare has brought technological breakthroughs to traditional diagnosis and treatment, but it is accompanied by many risks and challenges. These adverse effects are also seen as ethical issues and affect trustworthiness in medical AI and need to be managed through identification, prognosis and monitoring. Methods We adopted a multidisciplinary approach and summarized five subjects that influence the trustworthiness of medical AI: data quality, algorithmic bias, opacity, safety and security, and responsibility attribution, and discussed these factors from the perspectives of technology, law, and healthcare stakeholders and institutions. The ethical framework of ethical values-ethical principles-ethical norms is used to propose corresponding ethical governance countermeasures for trustworthy medical AI from the ethical, legal, and regulatory aspects. Results Medical data are primarily unstructured, lacking uniform and standardized annotation, and data quality will directly affect the quality of medical AI algorithm models. Algorithmic bias can affect AI clinical predictions and exacerbate health disparities. The opacity of algorithms affects patients’ and doctors’ trust in medical AI, and algorithmic errors or security vulnerabilities can pose significant risks and harm to patients. The involvement of medical AI in clinical practices may threaten doctors ‘and patients’ autonomy and dignity. When accidents occur with medical AI, the responsibility attribution is not clear. All these factors affect people’s trust in medical AI. Conclusions In order to make medical AI trustworthy, at the ethical level, the ethical value orientation of promoting human health should first and foremost be considered as the top-level design. At the legal level, current medical AI does not have moral status and humans remain the duty bearers. At the regulatory level, strengthening data quality management, improving algorithm transparency and traceability to reduce algorithm bias, and regulating and reviewing the whole process of the AI industry to control risks are proposed. It is also necessary to encourage multiple parties to discuss and assess AI risks and social impacts, and to strengthen international cooperation and communication.

Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility?

B. Hameed B. Somani Kaivalya Aggarwal + 11 lainnya

14 Maret 2022

The legal and ethical issues that confront society due to Artificial Intelligence (AI) include privacy and surveillance, bias or discrimination, and potentially the philosophical challenge is the role of human judgment. Concerns about newer digital technologies becoming a new source of inaccuracy and data breaches have arisen as a result of its use. Mistakes in the procedure or protocol in the field of healthcare can have devastating consequences for the patient who is the victim of the error. Because patients come into contact with physicians at moments in their lives when they are most vulnerable, it is crucial to remember this. Currently, there are no well-defined regulations in place to address the legal and ethical issues that may arise due to the use of artificial intelligence in healthcare settings. This review attempts to address these pertinent issues highlighting the need for algorithmic transparency, privacy, and protection of all the beneficiaries involved and cybersecurity of associated vulnerabilities.

Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector

Ayatullah Qureshi J. Hussain Saad Abdullah + 4 lainnya

8 Februari 2023

Artificial intelligence (AI) has the potential to make substantial progress toward the goal of making healthcare more personalized, predictive, preventative, and interactive. We believe AI will continue its present path and ultimately become a mature and effective tool for the healthcare sector. Besides this AI-based systems raise concerns regarding data security and privacy. Because health records are important and vulnerable, hackers often target them during data breaches. The absence of standard guidelines for the moral use of AI and ML in healthcare has only served to worsen the situation. There is debate about how far artificial intelligence (AI) may be utilized ethically in healthcare settings since there are no universal guidelines for its use. Therefore, maintaining the confidentiality of medical records is crucial. This study enlightens the possible drawbacks of AI in the implementation of healthcare sector and their solutions to overcome these situations. Graphical Abstract

Fairness of artificial intelligence in healthcare: review and recommendations

T. Tsuboyama Y. Fushimi T. Nakaura + 15 lainnya

4 Agustus 2023

In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.

Embedded ethics: a proposal for integrating ethics into the development of medical AI

Ruth Müller Sami Haddadin A. Buyx + 3 lainnya

26 Januari 2022

The emergence of ethical concerns surrounding artificial intelligence (AI) has led to an explosion of high-level ethical principles being published by a wide range of public and private organizations. However, there is a need to consider how AI developers can be practically assisted to anticipate, identify and address ethical issues regarding AI technologies. This is particularly important in the development of AI intended for healthcare settings, where applications will often interact directly with patients in various states of vulnerability. In this paper, we propose that an ‘embedded ethics’ approach, in which ethicists and developers together address ethical issues via an iterative and continuous process from the outset of development, could be an effective means of integrating robust ethical considerations into the practical development of medical AI.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.