DOI: 10.1109/TVCG.2021.3114804
Terbit pada 23 Agustus 2021 Pada IEEE Transactions on Visualization and Computer Graphics

VizLinter: A Linter and Fixer Framework for Data Visualization

Xinyue Xu F. Sun Zui Chen + 3 penulis

Abstrak

Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.

Artikel Ilmiah Terkait

Variability in data visualization: a software product line approach

J. Horcas J. Galindo David Benavides

12 September 2022

Data visualization aims to effectively communicate quantitative information by understanding which techniques and displays work better for different circumstances and why. There are a variety of software solutions capable of generating a multitude of different visualizations of the same dataset. However, data visualization exposes a large space of visual configurations depending on the type of data to be visualized, the different displays (e.g., scatter plots, line graphs, pie charts), the visual components to encode the data (e.g., lines, dots, bars), or the specific visual attributes of those components (e.g., color, shape, size, length). Researchers and developers are not usually aware about best practices in data visualization, and they are required to learn about both the design practices that make communication effective and the low level details of the specific software tool used to generate the visualization. This paper proposes a software product line approach to model and materialize the variability of the visualization design process, guided by feature models. We encode the visualization knowledge regarding the best design practices, resolve the variability following a step-wise configuration approach, and then evaluate our proposal for a specific software visualization tool. Our solution helps researchers and developers communicate their quantitative results effectively by assisting them in the selection and generation of the visualizations that work best for each case. We open a new window of research where data visualization and variability meet each other.

AI4VIS: Survey on Artificial Intelligence Approaches for Data Visualization

Haidong Zhang Dongmei Zhang Yun Wang + 5 lainnya

2 Februari 2021

Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the underlying vision of formalizing visualizations as an emerging data format and review the recent advance in applying AI techniques to visualization data (AI4VIS). We define visualization data as the digital representations of visualizations in computers and focus on data visualization (e.g., charts and infographics). We build our survey upon a corpus spanning ten different fields in computer science with an eye toward identifying important common interests. Our resulting taxonomy is organized around WHAT is visualization data and its representation, WHY and HOW to apply AI to visualization data. We highlight a set of common tasks that researchers apply to the visualization data and present a detailed discussion of AI approaches developed to accomplish those tasks. Drawing upon our literature review, we discuss several important research questions surrounding the management and exploitation of visualization data, as well as the role of AI in support of those processes. We make the list of surveyed papers and related material available online at.

Cheat Sheets for Data Visualization Techniques

Zezhong Wang Lovisa Sundin Dave Murray-Rust + 1 lainnya

18 Januari 2020

This paper introduces the concept of 'cheat sheets' for data visualization techniques, a set of concise graphical explanations and textual annotations inspired by infographics, data comics, and cheat sheets in other domains. Cheat sheets aim to address the increasing need for accessible material that supports a wide audience in understanding data visualization techniques, their use, their fallacies and so forth. We have carried out an iterative design process with practitioners, teachers and students of data science and visualization, resulting six types of cheat sheet (anatomy, construction, visual patterns, pitfalls, false-friends and well-known relatives) for six types of visualization, and formats for presentation. We assess these with a qualitative user study using 11 participants that demonstrates the readability and usefulness of our cheat sheets.

Examining data visualization pitfalls in scientific publications

V. Nguyen Kwanghee Jung Vibhuti Gupta

29 Oktober 2021

Data visualization blends art and science to convey stories from data via graphical representations. Considering different problems, applications, requirements, and design goals, it is challenging to combine these two components at their full force. While the art component involves creating visually appealing and easily interpreted graphics for users, the science component requires accurate representations of a large amount of input data. With a lack of the science component, visualization cannot serve its role of creating correct representations of the actual data, thus leading to wrong perception, interpretation, and decision. It might be even worse if incorrect visual representations were intentionally produced to deceive the viewers. To address common pitfalls in graphical representations, this paper focuses on identifying and understanding the root causes of misinformation in graphical representations. We reviewed the misleading data visualization examples in the scientific publications collected from indexing databases and then projected them onto the fundamental units of visual communication such as color, shape, size, and spatial orientation. Moreover, a text mining technique was applied to extract practical insights from common visualization pitfalls. Cochran’s Q test and McNemar’s test were conducted to examine if there is any difference in the proportions of common errors among color, shape, size, and spatial orientation. The findings showed that the pie chart is the most misused graphical representation, and size is the most critical issue. It was also observed that there were statistically significant differences in the proportion of errors among color, shape, size, and spatial orientation.

Dead or Alive: Continuous Data Profiling for Interactive Data Science

Adam Perer Vaishnavi Gorantla Will Epperson + 1 lainnya

8 Agustus 2023

Profiling data by plotting distributions and analyzing summary statistics is a critical step throughout data analysis. Currently, this process is manual and tedious since analysts must write extra code to examine their data after every transformation. This inefficiency may lead to data scientists profiling their data infrequently, rather than after each transformation, making it easy for them to miss important errors or insights. We propose continuous data profiling as a process that allows analysts to immediately see interactive visual summaries of their data throughout their data analysis to facilitate fast and thorough analysis. Our system, AutoProfiler, presents three ways to support continuous data profiling: (1) it automatically displays data distributions and summary statistics to facilitate data comprehension; (2) it is live, so visualizations are always accessible and update automatically as the data updates; (3) it supports follow up analysis and documentation by authoring code for the user in the notebook. In a user study with 16 participants, we evaluate two versions of our system that integrate different levels of automation: both automatically show data profiles and facilitate code authoring, however, one version updates reactively (“live”) and the other updates only on demand (“dead”). We find that both tools, dead or alive, facilitate insight discovery with 91% of user-generated insights originating from the tools rather than manual profiling code written by users. Participants found live updates intuitive and felt it helped them verify their transformations while those with on-demand profiles liked the ability to look at past visualizations. We also present a longitudinal case study on how AutoProfiler helped domain scientists find serendipitous insights about their data through automatic, live data profiles. Our results have implications for the design of future tools that offer automated data analysis support.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.