Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation
Abstrak
The Healthcare Internet-of-Things (H-IoT), commonly known as Digital Healthcare, is a data-driven infrastructure that highly relies on smart sensing devices (i.e., blood pressure monitors, temperature sensors, etc.) for faster response time, treatments, and diagnosis. However, with the evolving cyber threat landscape, IoT devices have become more vulnerable to the broader risk surface (e.g., risks associated with generative AI, 5G-IoT, etc.), which, if exploited, may lead to data breaches, unauthorized access, and lack of command and control and potential harm. This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices. The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application. Detecting and responding to anomalies involves various cyber-attacks and protocols such as Wi-Fi 6, Narrowband Internet of Things (NB-IoT), Bluetooth, ZigBee, LoRa, and 5G New Radio (5G NR). A robust authentication mechanism based on machine learning and deep learning techniques is required to protect and mitigate H-IoT devices from increasing cybersecurity vulnerabilities. Hence, in this review paper, security and privacy challenges and risk mitigation strategies for building resilience in H-IoT are explored and reported.
Artikel Ilmiah Terkait
Subiksha Srinivasa Gopalan A. Raza Wesam A. Almobaideen
16 Maret 2021
Internet of Things (IoT) and Artificial Intelligence (AI) has led the digital transformation in modern healthcare. With any kind of digital transformation, security challenges must be considered in the early stages of the design. Healthcare data is sensitive and any breach compromises the privacy of patients. More so in IoT networks where the connected devices are vulnerable to attacks. Cyberattacks can result in life-threatening consequences. In this paper, a survey and analysis of research on the use of AI as a tool for cybersecurity to protect IoT networks used for healthcare are presented. A thorough analysis of literature between 2014 and 2019 is provided. A niche opportunity for researchers to focus on in this space is identified following a thorough analysis of related papers.
A. Al-Ali Junaid Qadir Guillaume Alinier + 5 lainnya
28 Oktober 2022
Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97–99.5% based on the F1 scores.
Moulhime Elbekkali S. Mazer Benaissa Bernoussi + 4 lainnya
3 Maret 2022
The integration of healthcare-related sensors and devices into IoT has resulted in the evolution of the IoMT (Internet of Medical Things). IoMT that can be viewed as an improvement and investment in order to meet patients' needs more efficiently and effectively. It is progressively replacing traditional healthcare systems, particularly after the worldwide impact of COVID. IoMT devices have enabled real time monitoring in the healthcare field, allowing physicians to provide superior care while also keeping patients safe. As IoMT applications have evolved, the variety and volume of security threats and attacks including routing attacks and DoS (Denial of Service), for these systems have increased, necessitating specific efforts to study intrusion detection systems (IDSs) for IoMT systems. However, IDSs are generally too resource intensive to be managed by small IoMT devices, due to their limited processing resources and energy. In this regard, machine learning and deep learning approaches are the most suitable detection and control techniques for IoMT device-generated attacks. The purpose of this research is to present various methods for detecting attacks in the IoMT system. Furthermore, we review, compare, and analyze different machine learning (ML) and deep learning (DL) based mechanisms proposed to prevent and detect IoMT network attacks, emphasizing the proposed methods, performances, and limitations. Based on a comprehensive analysis of current defensive security measures, this work identifies potential open research related challenges and orientations for the actual design of those systems for IoMT networks, that may guide further research in this field.
Maryam Mahsal Khan Mohammed Alkhathami
11 Maret 2024
Internet of Things (IoT) integration in healthcare improves patient care while also making healthcare delivery systems more effective and economical. To fully realize the advantages of IoT in healthcare, it is imperative to overcome issues with data security, interoperability, and ethical considerations. IoT sensors periodically measure the health-related data of the patients and share it with a server for further evaluation. At the server, different machine learning algorithms are applied which help in early diagnosis of diseases and issue alerts in case vital signs are out of the normal range. Different cyber attacks can be launched on IoT devices which can result in compromised security and privacy of applications such as health care. In this paper, we utilize the publicly available Canadian Institute for Cybersecurity (CIC) IoT dataset to model machine learning techniques for efficient detection of anomalous network traffic. The dataset consists of 33 types of IoT attacks which are divided into 7 main categories. In the current study, the dataset is pre-processed, and a balanced representation of classes is used in generating a non-biased supervised (Random Forest, Adaptive Boosting, Logistic Regression, Perceptron, Deep Neural Network) machine learning models. These models are analyzed further by eliminating highly correlated features, reducing dimensionality, minimizing overfitting, and speeding up training times. Random Forest was found to perform optimally across binary and multiclass classification of IoT Attacks with an approximate accuracy of 99.55% under both reduced and all feature space. This improvement was complimented by a reduction in computational response time which is essential for real-time attack detection and response.
Prajoy Podder Subrato Bharati
27 Agustus 2022
The integration of the Internet of Things (IoT) connects a number of intelligent devices with minimum human interference that can interact with one another. IoT is rapidly emerging in the areas of computer science. However, new security problems are posed by the cross-cutting design of the multidisciplinary elements and IoT systems involved in deploying such schemes. Ineffective is the implementation of security protocols, i.e., authentication, encryption, application security, and access network for IoT systems and their essential weaknesses in security. Current security approaches can also be improved to protect the IoT environment effectively. In recent years, deep learning (DL)/machine learning (ML) has progressed significantly in various critical implementations. Therefore, DL/ML methods are essential to turn IoT system protection from simply enabling safe contact between IoT systems to intelligence systems in security. This review aims to include an extensive analysis of ML systems and state-of-the-art developments in DL methods to improve enhanced IoT device protection methods. On the other hand, various new insights in machine and deep learning for IoT securities illustrate how it could help future research. IoT protection risks relating to emerging or essential threats are identified, as well as future IoT device attacks and possible threats associated with each surface. We then carefully analyze DL and ML IoT protection approaches and present each approach’s benefits, possibilities, and weaknesses. This review discusses a number of potential challenges and limitations. The future works, recommendations, and suggestions of DL/ML in IoT security are also included.
Daftar Referensi
15 referensiAttention-Based Multidimensional Deep Learning Approach for Cross-Architecture IoMT Malware Detection and Classification in Healthcare Cyber-Physical Systems
T. Pham M. Alazab + 1 lainnya
1 Agustus 2023
A literature survey shows that the number of malware attacks is gradually growing over the years due to the growing trend of Internet of Medical Things (IoMT) devices. To detect and classify malware attacks, automated malware detection and classification is an essential subsystem in healthcare cyber-physical systems. This work proposes an attention-based multidimensional deep learning (DL) approach for a cross-architecture IoMT malware detection and classification system based on byte sequences extracted from Executable and Linkable Format (ELF; formerly named Extensible Linking Format) files. The DL approach automates the feature design and extraction process from unstructured byte sequences. In addition, the proposed approach facilitates the detection of the central processing unit (CPU) architecture of the ELF file. A detailed experimental analysis and its evaluation are shown on the IoMT cross-architecture benchmark dataset. In all the experiments, the proposed method showed better performance compared with those obtained from several existing methods with an accuracy of 95% for IoMT malware detection, 94% for IoMT malware classification, and 95% for CPU architectures classification. The proposed method also suggests a similar performance with an accuracy of 94% on the Microsoft malware dataset. Experimental results on two malware datasets indicate that the proposed method is robust and generalizable in cross-architecture IoMT malware detection, classification, and CPU architectures classification in healthcare cyber-physical systems.
The elephant in the room: cybersecurity in healthcare
Anthony James Cartwright
24 April 2023
Cybersecurity has seen an increasing frequency and impact of cyberattacks and exposure of Protected Health Information (PHI). The uptake of an Electronic Medical Record (EMR), the exponential adoption of Internet of Things (IoT) devices, and the impact of the COVID-19 pandemic has increased the threat surface presented for cyberattack by the healthcare sector. Within healthcare generally and, more specifically, within anaesthesia and Intensive Care, there has been an explosion in wired and wireless devices used daily in the care of almost every patient—the Internet of Medical Things (IoMT); ventilators, anaesthetic machines, infusion pumps, pacing devices, organ support and a plethora of monitoring modalities. All of these devices, once connected to a hospital network, present another opportunity for a malevolent party to access the hospital systems, either to gain PHI for financial, political or other gain or to attack the systems directly to cause erroneous monitoring, altered settings of any device and even to access the EMR via this IoMT window. This exponential increase in the IoMT and the increasing wireless connectivity of anaesthesia and ICU devices as well as implantable devices presents a real and present danger to patient safety. There has, at the same time, been a chronic underfunding of cybersecurity in healthcare. This lack of cybersecurity investment has left the sector exposed, and with the monetisation of PHI, the introduction of technically unsecure IoT devices for monitoring and direct patient care, the healthcare sector is presenting itself for further devastating cyberattacks or breaches of PHI. Coupled with the immense strain that the COVID-19 pandemic has placed on healthcare and the changes in working patterns of many caregivers, this has further amplified the exposure of the sector to cyberattacks.
Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence
K. Ouahada Inam Ullah + 6 lainnya
1 April 2023
The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications. Many traditional techniques for protecting the IoT are now ineffective due to new dangers and vulnerabilities. To keep their security procedures, IoT systems of the future will need AI-efficient machine learning and deep learning. The capabilities of artificial intelligence, particularly machine and deep learning solutions, must be used if the next-generation IoT system is to have a continuously changing and up-to-date security system. IoT security intelligence is examined in this paper from every angle available. An innovative method for protecting IoT devices against a variety of cyberattacks is to use machine learning and deep learning to gain information from raw data. Finally, we discuss relevant research issues and potential next steps considering our findings. This article examines how machine learning and deep learning can be used to detect attack patterns in unstructured data and safeguard IoT devices. We discuss the challenges that researchers face, as well as potential future directions for this research area, considering these findings. Anyone with an interest in the IoT or cybersecurity can use this website’s content as a technical resource and reference.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.