A Predictive Vehicle Ride Sharing Recommendation System for Smart Cities Commuting
Abstrak
Smart Cities (or Cities 2.0) are an evolution in citizen habitation. In such cities, transport commuting is changing rapidly with the proliferation of contemporary vehicular technology. New models of vehicle ride sharing systems are changing the way citizens commute in their daily movement schedule. The use of a private vehicle per single passenger transportation is no longer viable in sustainable Smart Cities (SC) because of the vehicles’ resource allocation and urban pollution. The current research on car ride sharing systems is widely expanding in a range of contemporary technologies, however, without covering a multidisciplinary approach. In this paper, the focus is on performing a multidisciplinary research on car riding systems taking into consideration personalized user mobility behavior by providing next destination prediction as well as a recommender system based on riders’ personalized information. Specifically, it proposes a predictive vehicle ride sharing system for commuting, which has impact on the SC green ecosystem. The adopted system also provides a recommendation to citizens to select the persons they would like to commute with. An Artificial Intelligence (AI)-enabled weighted pattern matching model is used to assess user movement behavior in SC and provide the best predicted recommendation list of commuting users. Citizens are then able to engage a current trip to next destination with the more suitable user provided by the list. An experimented is conducted with real data from the municipality of New Philadelphia, in SC of Athens, Greece, to implement the proposed system and observe certain user movement behavior. The results are promising for the incorporation of the adopted system to other SCs.
Artikel Ilmiah Terkait
P. Copado R. D. Tordecilla L. D. C. Martins + 3 lainnya
1 Oktober 2021
With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.
Eugenio Cesario
12 Mei 2023
Urban environments continuously generate larger and larger volumes of data, whose analysis can provide descriptive and predictive models as valuable support to inspire and develop data-driven Smart City applications. To this aim, Big data analysis and machine learning algorithms can play a fundamental role to bring improvements in city policies and urban issues. This paper introduces how Big Data analysis can be exploited to design and develop data-driven smart city services, and provides an overview on the most important Smart City applications, grouped in several categories. Then, it presents three real-case studies showing how data analysis methodologies can provide innovative solutions to deal with smart city issues. The first one is an approach for spatio-temporal crime forecasting (tested on Chicago crime data), the second one is methodology to discover mobility hotsposts and trajectory patterns from GPS data (tested on Beijing taxi traces), the third one is an approach to discover predictive epidemic patterns from mobility and infection data (tested on real COVID-19 data). The presented real-world cases prove that data analytics models can effectively support city managers in tackling smart city challenges and improving urban applications.
Yongjie Wang Maolin Li
3 Agustus 2021
With the development of mobility techniques, the transportation systems become smarter, pursuing higher goals, such as convenience for passengers and low cost. In this work, we investigate the taxi-sharing system, which is a promising system recently. The passengers can share the same taxis to different destinations to save cost. Considering the property of taxis’ routes, the corresponding model is established and our aim is to design the trip for each taxi to reduce the total number of taxi trips in the whole system if one taxi can be shared by several passengers. Compared with the previous work, we do not have any constraint about the taxi stations. The taxi trips have more flexibility in reality. We analyze this problem and prove it is NP-Complete. There are two proposed algorithms to solve this problem, one is a heuristic algorithm and the other is an approximate algorithm. In the experiment, two real-world taxi data sets are tested, and our algorithm shows the superiority of our taxi-sharing system. Using the taxi-sharing system, the number of trips can be reduced by about 30 % .
Nitin Goyal A. Rana S. Pani + 5 lainnya
1 April 2022
The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.
Anestis Kousis Christos Tjortjis
2021
Smart cities connect people and places using innovative technologies such as Data Mining (DM), Machine Learning (ML), big data, and the Internet of Things (IoT). This paper presents a bibliometric analysis to provide a comprehensive overview of studies associated with DM technologies used in smart cities applications. The study aims to identify the main DM techniques used in the context of smart cities and how the research field of DM for smart cities evolves over time. We adopted both qualitative and quantitative methods to explore the topic. We used the Scopus database to find relative articles published in scientific journals. This study covers 197 articles published over the period from 2013 to 2021. For the bibliometric analysis, we used the Biliometrix library, developed in R. Our findings show that there is a wide range of DM technologies used in every layer of a smart city project. Several ML algorithms, supervised or unsupervised, are adopted for operating the instrumentation, middleware, and application layer. The bibliometric analysis shows that DM for smart cities is a fast-growing scientific field. Scientists from all over the world show a great interest in researching and collaborating on this interdisciplinary scientific field.
Daftar Referensi
1 referensiArtikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.