IoT-Enabled Solid Waste Management in Smart Cities
Abstrak
The Internet of Things (IoT) paradigm plays a vital role for improving smart city applications by tracking and managing city processes in real-time. One of the most significant issues associated with smart city applications is solid waste management, which has a negative impact on our society’s health and the environment. The traditional waste management process begins with waste created by city residents and disposed of in garbage bins at the source. Municipal department trucks collect garbage and move it to recycling centers on a fixed schedule. Municipalities and waste management companies fail to keep up with outdoor containers, making it impossible to determine when to clean them or when they are full. This work proposes an IoT-enabled solid waste management system for smart cities to overcome the limitations of the traditional waste management systems. The proposed architecture consists of two types of end sensor nodes: PBLMU (Public Bin Level Monitoring Unit) and HBLMU (Home Bin Level Monitoring Unit), which are used to track bins in public and residential areas, respectively. The PBLMUs and HBLMUs measure the unfilled level of the trash bin and its location data, process it, and transmit it to a central monitoring station for storage and analysis. An intelligent Graphical User Interface (GUI) enables the waste collection authority to view and evaluate the unfilled status of each trash bin. To validate the proposed system architecture, the following significant experiments were conducted: (a) Eight trash bins were equipped with PBLMUs and connected to a LoRaWAN network and another eight trash bins were equipped with HBLMUs and connected to a Wi-Fi network. The trash bins were filled with wastes at different levels and the corresponding unfilled levels of every trash bin were monitored through the intelligent GUI. (b) An experimental setup was arranged to measure the sleep current and active current contributions of a PBLMU to estimate its average current consumption. (c) The life expectancy of a PBLMU was estimated as approximately 70 days under hypothetical conditions.
Artikel Ilmiah Terkait
I. Sosunova J. Porras
2022
With urbanization, rising income and consumption, the production of waste increases. One of the most important directions in the field of sustainable development is the design and implementation of monitoring and management systems for waste collection and removal. Smart waste management (SWM) involves for example collection and analytics of data from sensors on smart garbage bins (SGBs), management of waste trucks and urban infrastructure; planning and optimization of waste truck routes; etc. The purpose of this paper is to provide a comprehensive overview of the existing research in the field of systems, applications, and approaches vis-à-vis the collection and processing of solid waste in SWM systems. To achieve this objective, we performed a systematic literature review. This study consists of 173 primary studies selected for analysis and data extraction from the 3,732 initially retrieved studies from 5 databases. We 1) identified the main approaches and services that are applied in the city and SGB-level SWM systems, 2) listed sensors and actuators and analyzed their application in various types of SWM systems, 3) listed the direct and indirect stakeholders of the SWM systems, 4) identified the types of data shared between the SWM systems and stakeholders, and 5) identified the main promising directions and research gaps in the field of SWM systems. Based on an analysis of the existing approaches, technologies, and services, we developed recommendations for the implementation of city-level and SGB-level SWM systems.
Sandeep Mishra Aditya Pal Hari Mohan Rai + 2 lainnya
31 Agustus 2023
The Internet of Things (IoT) is rapidly becoming one of the most talked-about and essential components of any digitization process. The IoT is comprised of several key necessary components, the most important of which are sensors, communication (the internet), and user interfaces for data processing. IoTs are currently finding applications in virtually every industry, including healthcare, where they are known as the internet of medical things (IoMT), industry, where they are known as the industrial internet of things (IIoT), and interconnection between people, where they are known as the internet of everything (IoE). The challenge is to leverage the Internet of Things (IoT), technology, and data to create smarter and more sustainable cities that enhance the quality of life for residents. Therefore, in this article; we have demonstrated the use of the IoT in a variety of applications for smart communities. These applications include smart transportation, smart water management, smart garbage management, smart house illumination, smart parking, smart infrastructure, etc. This research also includes an explanation of the flow process of implementing the IoT in different applications of smart communities, as well as their characteristics and particular applications. Along with their flow illustration, the stages involved in the implementation of smart city applications and the components they consist of are also displayed here. We have also taken into consideration the instances of particular cases and their implementation utilizing IoT. Some of these cases include the automated water collection methods of smart water management systems as well as the condition of the water. Based on the findings of the research, we came to the conclusion that IoT devices play an essential role in each and every one of the smart city project implementations.
Faris A. Almalki J. Hassan Abdu Saif + 6 lainnya
17 Agustus 2021
The development of the Internet of Things (IoT) technology and their integration in smart cities have changed the way we work and live, and enriched our society. However, IoT technologies present several challenges such as increases in energy consumption, and produces toxic pollution as well as E-waste in smart cities. Smart city applications must be environmentally-friendly, hence require a move towards green IoT. Green IoT leads to an eco-friendly environment, which is more sustainable for smart cities. Therefore, it is essential to address the techniques and strategies for reducing pollution hazards, traffic waste, resource usage, energy consumption, providing public safety, life quality, and sustaining the environment and cost management. This survey focuses on providing a comprehensive review of the techniques and strategies for making cities smarter, sustainable, and eco-friendly. Furthermore, the survey focuses on IoT and its capabilities to merge into aspects of potential to address the needs of smart cities. Finally, we discuss challenges and opportunities for future research in smart city applications.
E. Hamza P. Yap A. Osman + 6 lainnya
9 Mei 2023
The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste ecosystem, such as the use of artificial intelligence. Here, we review the application of artificial intelligence in waste-to-energy, smart bins, waste-sorting robots, waste generation models, waste monitoring and tracking, plastic pyrolysis, distinguishing fossil and modern materials, logistics, disposal, illegal dumping, resource recovery, smart cities, process efficiency, cost savings, and improving public health. Using artificial intelligence in waste logistics can reduce transportation distance by up to 36.8%, cost savings by up to 13.35%, and time savings by up to 28.22%. Artificial intelligence allows for identifying and sorting waste with an accuracy ranging from 72.8 to 99.95%. Artificial intelligence combined with chemical analysis improves waste pyrolysis, carbon emission estimation, and energy conversion. We also explain how efficiency can be increased and costs can be reduced by artificial intelligence in waste management systems for smart cities.
Fan Zeng Huajun Tang Chuang-Chuang Pang
24 Maret 2024
The Internet of Things (IoT) is a critical component of smart cities and a key contributor to the achievement of the United Nations Sustainable Development Goal (UNSDG) 11: Sustainable Cities and Communities. The IoT is an infrastructure that enables devices to communicate with each other over the Internet, providing critical components for smart cities, such as data collection, generation, processing, analysis, and application handling. IoT-based applications can promote sustainable urban development. Many studies demonstrate how the IoT can improve smart cities’ sustainable development. This systematic literature review provides valuable insights into the utilization of the IoT in the context of smart cities, with a particular focus on its implications for sustainable urban development. Based on an analysis of 73 publications, we discuss the role of IoT in the sustainable development of smart cities, focusing on smart communities, smart transportation, disaster management, privacy and security, and emerging applications. In each domain, we have detailed the attributes of IoT sensors. In addition, we have examined various communication technologies and protocols suitable for transmitting sensor-generated data. We have also presented the methods for analyzing and integrating these data within the IoT application layer. Finally, we identify research gaps in the literature, highlighting areas that require further investigation.
Daftar Referensi
1 referensiArtikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.