DOI: 10.1007/s42979-021-00815-1
Terbit pada 2 Agustus 2021 Pada SN Computer Science

Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions

Iqbal H. Sarker

Abstrak

Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (AI) is nowadays considered as a core technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0). Due to its learning capabilities from data, DL technology originated from artificial neural network (ANN), has become a hot topic in the context of computing, and is widely applied in various application areas like healthcare, visual recognition, text analytics, cybersecurity, and many more. However, building an appropriate DL model is a challenging task, due to the dynamic nature and variations in real-world problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines that hamper development at the standard level. This article presents a structured and comprehensive view on DL techniques including a taxonomy considering various types of real-world tasks like supervised or unsupervised. In our taxonomy, we take into account deep networks for supervised or discriminative learning, unsupervised or generative learning as well as hybrid learning and relevant others. We also summarize real-world application areas where deep learning techniques can be used. Finally, we point out ten potential aspects for future generation DL modeling with research directions. Overall, this article aims to draw a big picture on DL modeling that can be used as a reference guide for both academia and industry professionals.

Artikel Ilmiah Terkait

Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions

Mohammad Mustafa Taye

25 April 2023

In recent years, deep learning (DL) has been the most popular computational approach in the field of machine learning (ML), achieving exceptional results on a variety of complex cognitive tasks, matching or even surpassing human performance. Deep learning technology, which grew out of artificial neural networks (ANN), has become a big deal in computing because it can learn from data. The ability to learn enormous volumes of data is one of the benefits of deep learning. In the past few years, the field of deep learning has grown quickly, and it has been used successfully in a wide range of traditional fields. In numerous disciplines, including cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, deep learning has outperformed well-known machine learning approaches. In order to provide a more ideal starting point from which to create a comprehensive understanding of deep learning, also, this article aims to provide a more detailed overview of the most significant facets of deep learning, including the most current developments in the field. Moreover, this paper discusses the significance of deep learning and the various deep learning techniques and networks. Additionally, it provides an overview of real-world application areas where deep learning techniques can be utilised. We conclude by identifying possible characteristics for future generations of deep learning modelling and providing research suggestions. On the same hand, this article intends to provide a comprehensive overview of deep learning modelling that can serve as a resource for academics and industry people alike. Lastly, we provide additional issues and recommended solutions to assist researchers in comprehending the existing research gaps. Various approaches, deep learning architectures, strategies, and applications are discussed in this work.

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

O. Al-Shamma Ayad Al-dujaili José I. Santamaría + 7 lainnya

31 Maret 2021

In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.

An Introductory Review of Deep Learning for Prediction Models With Big Data

M. Dehmer S. Tripathi Zhenyi Yang + 2 lainnya

28 Februari 2020

Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and machine learning. Recent breakthrough results in image analysis and speech recognition have generated a massive interest in this field because also applications in many other domains providing big data seem possible. On a downside, the mathematical and computational methodology underlying deep learning models is very challenging, especially for interdisciplinary scientists. For this reason, we present in this paper an introductory review of deep learning approaches including Deep Feedforward Neural Networks (D-FFNN), Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Autoencoders (AEs), and Long Short-Term Memory (LSTM) networks. These models form the major core architectures of deep learning models currently used and should belong in any data scientist's toolbox. Importantly, those core architectural building blocks can be composed flexibly—in an almost Lego-like manner—to build new application-specific network architectures. Hence, a basic understanding of these network architectures is important to be prepared for future developments in AI.

Deep learning modelling techniques: current progress, applications, advantages, and challenges

M. Mofijur Amir H. Gandomi Maruf Hassan + 6 lainnya

17 April 2023

Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can be applied across various sectors. Specifically, it possesses the ability to utilize two or more levels of non-linear feature transformation of the given data via representation learning in order to overcome limitations posed by large datasets. As a multidisciplinary field that is still in its nascent phase, articles that survey DL architectures encompassing the full scope of the field are rather limited. Thus, this paper comprehensively reviews the state-of-art DL modelling techniques and provides insights into their advantages and challenges. It was found that many of the models exhibit a highly domain-specific efficiency and could be trained by two or more methods. However, training DL models can be very time-consuming, expensive, and requires huge samples for better accuracy. Since DL is also susceptible to deception and misclassification and tends to get stuck on local minima, improved optimization of parameters is required to create more robust models. Regardless, DL has already been leading to groundbreaking results in the healthcare, education, security, commercial, industrial, as well as government sectors. Some models, like the convolutional neural network (CNN), generative adversarial networks (GAN), recurrent neural network (RNN), recursive neural networks, and autoencoders, are frequently used, while the potential of other models remains widely unexplored. Pertinently, hybrid conventional DL architectures have the capacity to overcome the challenges experienced by conventional models. Considering that capsule architectures may dominate future DL models, this work aimed to compile information for stakeholders involved in the development and use of DL models in the contemporary world.

Machine Learning: Algorithms, Real-World Applications and Research Directions

Iqbal H. Sarker

8 Maret 2021

In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

2 sitasi

Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence

K. Ouahada Inam Ullah + 6 lainnya

1 April 2023

The Internet of Things (IoT) is a well-known technology that has a significant impact on many areas, including connections, work, healthcare, and the economy. IoT has the potential to improve life in a variety of contexts, from smart cities to classrooms, by automating tasks, increasing output, and decreasing anxiety. Cyberattacks and threats, on the other hand, have a significant impact on intelligent IoT applications. Many traditional techniques for protecting the IoT are now ineffective due to new dangers and vulnerabilities. To keep their security procedures, IoT systems of the future will need AI-efficient machine learning and deep learning. The capabilities of artificial intelligence, particularly machine and deep learning solutions, must be used if the next-generation IoT system is to have a continuously changing and up-to-date security system. IoT security intelligence is examined in this paper from every angle available. An innovative method for protecting IoT devices against a variety of cyberattacks is to use machine learning and deep learning to gain information from raw data. Finally, we discuss relevant research issues and potential next steps considering our findings. This article examines how machine learning and deep learning can be used to detect attack patterns in unstructured data and safeguard IoT devices. We discuss the challenges that researchers face, as well as potential future directions for this research area, considering these findings. Anyone with an interest in the IoT or cybersecurity can use this website’s content as a technical resource and reference.

Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions

Asif Irshad Khan Iqbal H. Sarker + 2 lainnya

14 Maret 2022

The Internet of Things (IoT) is one of the most widely used technologies today, and it has a significant effect on our lives in a variety of ways, including social, commercial, and economic aspects. In terms of automation, productivity, and comfort for consumers across a wide range of application areas, from education to smart cities, the present and future IoT technologies hold great promise for improving the overall quality of human life. However, cyber-attacks and threats greatly affect smart applications in the environment of IoT. The traditional IoT security techniques are insufficient with the recent security challenges considering the advanced booming of different kinds of attacks and threats. Utilizing artificial intelligence (AI) expertise, especially machine and deep learning solutions , is the key to delivering a dynamically enhanced and up-to-date security system for the next-generation IoT system. Throughout this article, we present a comprehensive picture on IoT security intelligence , which is built on machine and deep learning technologies that extract insights from raw data to intelligently protect IoT devices against a variety of cyber-attacks. Finally, based on our study, we highlight the associated research issues and future directions within the scope of our study. Overall, this article aspires to serve as a reference point and guide, particularly from a technical standpoint, for cybersecurity experts and researchers working in the context of IoT.