Towards a Roadmap on Software Engineering for Responsible AI
Abstrak
Although AI is transforming the world, there are serious concerns about its ability to behave and make decisions responsibly. Many ethical regulations, principles, and frameworks for responsible AI have been issued recently. However, they are high level and difficult to put into practice. On the other hand, most AI researchers focus on algorithmic solutions, while the responsible AI challenges actually crosscut the entire engineering lifecycle and components of AI systems. To close the gap in operationalizing responsible AI, this paper aims to develop a roadmap on software engineering for responsible AI. The roadmap focuses on (i) establishing multi-level governance for responsible AI systems, (ii) setting up the development processes incorporating process-oriented practices for responsible AI systems, and (iii) building responsible-AI-by-design into AI systems through system-level architectural style, patterns and techniques. CCS CONCEPTS • Software and its engineering;
Artikel Ilmiah Terkait
Q. Lu J. Whittle Liming Zhu + 1 lainnya
1 Mei 2023
Responsible artificial intelligence (AI) issues often occur at the system level, crosscutting many system components and the entire software engineering lifecycle. We summarize design patterns that can be embedded into AI systems as product features to contribute to responsible-AI-by-design.
Xavier Franch Julien Siebert Anna Maria Vollmer + 5 lainnya
5 Mei 2021
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
M. Taddeo Claudio Novelli Luciano Floridi
7 Februari 2023
Accountability is a cornerstone of the governance of artificial intelligence (AI). However, it is often defined too imprecisely because its multifaceted nature and the sociotechnical structure of AI systems imply a variety of values, practices, and measures to which accountability in AI can refer. We address this lack of clarity by defining accountability in terms of answerability, identifying three conditions of possibility (authority recognition, interrogation, and limitation of power), and an architecture of seven features (context, range, agent, forum, standards, process, and implications). We analyze this architecture through four accountability goals (compliance, report, oversight, and enforcement). We argue that these goals are often complementary and that policy-makers emphasize or prioritize some over others depending on the proactive or reactive use of accountability and the missions of AI governance.
Bifei Mao Zeqi Zhang X. Yao + 1 lainnya
1 Agustus 2023
Artificial intelligence (AI) has profoundly changed and will continue to change our lives. AI is being applied in more and more fields and scenarios such as autonomous driving, medical care, media, finance, industrial robots, and internet services. The widespread application of AI and its deep integration with the economy and society have improved efficiency and produced benefits. At the same time, it will inevitably impact the existing social order and raise ethical concerns. Ethical issues, such as privacy leakage, discrimination, unemployment, and security risks, brought about by AI systems have caused great trouble to people. Therefore, AI ethics, which is a field related to the study of ethical issues in AI, has become not only an important research topic in academia, but also an important topic of common concern for individuals, organizations, countries, and society. This article will give a comprehensive overview of this field by summarizing and analyzing the ethical risks and issues raised by AI, ethical guidelines and principles issued by different organizations, approaches for addressing ethical issues in AI, and methods for evaluating the ethics of AI. Additionally, challenges in implementing ethics in AI and some future perspectives are pointed out. We hope our work will provide a systematic and comprehensive overview of AI ethics for researchers and practitioners in this field, especially the beginners of this research discipline.
Kush R. Varshney Huan Liu Lu Cheng
1 Januari 2021
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppression and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AI’s indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation. This article appears in the special track on AI & Society.
Daftar Referensi
1 referensiArtikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.