Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis
Abstrak
With the rapid growth of Android malware, many machine learning-based malware analysis approaches are proposed to mitigate the severe phenomenon. However, such classifiers are opaque, non-intuitive, and difficult for analysts to understand the inner decision reason. For this reason, a variety of explanation approaches are proposed to interpret predictions by providing important features. Unfortunately, the explanation results obtained in the malware analysis domain cannot achieve a consensus in general, which makes the analysts confused about whether they can trust such results. In this work, we propose principled guidelines to assess the quality of five explanation approaches by designing three critical quantitative metrics to measure their stability, robustness, and effectiveness. Furthermore, we collect five widely-used malware datasets and apply the explanation approaches on them in two tasks, including malware detection and familial identification. Based on the generated explanation results, we conduct a sanity check of such explanation approaches in terms of the three metrics. The results demonstrate that our metrics can assess the explanation approaches and help us obtain the knowledge of most typical malicious behaviors for malware analysis.
Artikel Ilmiah Terkait
F. Martinelli F. Mercaldo Giacomo Iadarola + 3 lainnya
18 Juli 2021
Cybercriminals are continually working to develop increasingly aggressive malicious code to steal sensitive and private information from mobile devices. Antimalware are not always able to detect all threats, especially when they do not have previous knowledge of the malware signature. Moreover, malware code analysis remains a time-consuming process for security analysts. In this regard, we propose a method aimed to detect the malware belonging family and automatically pointing out a subset of potentially malicious classes. The rationale behind this work aims (i) to save valuable time for the security analyst by decreasing the amount of code to analyse, and (ii) to improve the interpretability of image-based deep learning model for malware family detection. We represent an application as an image and classify it with a deep learning model aimed to predict the belonging family; then, exploiting the use of activation maps, the approach points out potentially malicious classes to help the security analysts in the malicious behaviour recognition. The proposed method obtains an overall accuracy of 0.944 in the evaluation of a dataset composed of 8430 real-world Android malware, showing also that the use of activation maps can provide explainability about the deep learning model decision.
Kevin Allix Jacques Klein N. Daoudi + 1 lainnya
4 Mei 2022
Machine learning advances have been extensively explored for implementing large-scale malware detection. When reported in the literature, performance evaluation of machine learning based detectors generally focuses on highlighting the ratio of samples that are correctly or incorrectly classified, overlooking essential questions on why/how the learned models can be demonstrated as reliable. In the Android ecosystem, several recent studies have highlighted how evaluation setups can carry biases related to datasets or evaluation methodologies. Nevertheless, there is little work attempting to dissect the produced model to provide some understanding of its intrinsic characteristics. In this work, we fill this gap by performing a comprehensive analysis of a state-of-the-art Android malware detector, namely DREBIN, which constitutes today a key reference in the literature. Our study mainly targets an in-depth understanding of the classifier characteristics in terms of (1) which features actually matter among the hundreds of thousands that DREBIN extracts, (2) whether the high scores of the classifier are dependent on the dataset age, and (3) whether DREBIN’s explanations are consistent within malware families, among others. Overall, our tentative analysis provides insights into the discriminatory power of the feature set used by DREBIN to detect malware. We expect our findings to bring about a systematisation of knowledge for the community.
Benjamin C. M. Fung Mohd Saqib Samaneh Mahdavifar + 1 lainnya
11 Juli 2024
In the past decade, the number of malware variants has increased rapidly. Many researchers have proposed to detect malware using intelligent techniques, such as Machine Learning (ML) and Deep Learning (DL), which have high accuracy and precision. These methods, however, suffer from being opaque in the decision-making process. Therefore, we need Artificial Intelligence (AI)-based models to be explainable, interpretable, and transparent to be reliable and trustworthy. In this survey, we reviewed articles related to Explainable AI (XAI) and their application to the significant scope of malware detection. The article encompasses a comprehensive examination of various XAI algorithms employed in malware analysis. Moreover, we have addressed the characteristics, challenges, and requirements in malware analysis that cannot be accommodated by standard XAI methods. We discussed that even though Explainable Malware Detection (EMD) models provide explainability, they make an AI-based model more vulnerable to adversarial attacks. We also propose a framework that assigns a level of explainability to each XAI malware analysis model, based on the security features involved in each method. In summary, the proposed project focuses on combining XAI and malware analysis to apply XAI models for scrutinizing the opaque nature of AI systems and their applications to malware analysis.
W. El-shafai Mohanned Ahmed Iman M. Almomani
5 Juli 2022
This paper offers a comprehensive analysis model for android malware. The model presents the essential factors affecting the analysis results of android malware that are vision-based. Current android malware analysis and solutions might consider one or some of these factors while building their malware predictive systems. However, this paper comprehensively highlights these factors and their impacts through a deep empirical study. The study comprises 22 CNN (Convolutional Neural Network) algorithms, 21 of them are well-known, and one proposed algorithm. Additionally, several types of files are considered before converting them to images, and two benchmark android malware datasets are utilized. Finally, comprehensive evaluation metrics are measured to assess the produced predictive models from the security and complexity perspectives. Consequently, guiding researchers and developers to plan and build efficient malware analysis systems that meet their requirements and resources. The results reveal that some factors might significantly impact the performance of the malware analysis solution. For example, from a security perspective, the accuracy, F1-score, precision, and recall are improved by 131.29%, 236.44%, 192%, and 131.29%, respectively, when changing one factor and fixing all other factors under study. Similar results are observed in the case of complexity assessment, including testing time, CPU usage, storage size, and pre-processing speed, proving the importance of the proposed android malware analysis model.
Eva Domschot J. Ingram W. Kegelmeyer + 7 lainnya
1 November 2020
Machine learning (ML) techniques are being used to detect increasing amounts of malware and variants. Despite successful applications of ML, we hypothesize that the full potential of ML is not realized in malware analysis (MA) due to a semantic gap between the ML and MA communities---as demonstrated in the data that is used. Due in part to the available data, ML has primarily focused on detection whereas MA is also interested in identifying behaviors. We review existing open-source malware datasets used in ML and find a lack of behavioral information that could facilitate stronger impact by ML in MA. As a first step in bridging this gap, we label existing data with behavioral information using open-source MA reports---1) altering the analysis from identifying malware to identifying behaviors, 2)~aligning ML better with MA, and 3)~allowing ML models to generalize to novel malware in a zero/few-shot learning manner. We classify the behavior of a malware family not seen during training using transfer learning from a state-of-the-art model for malware family classification and achieve 57% - 84% accuracy on behavioral identification but fail to outperform the baseline set by a majority class predictor. This highlights opportunities for improvement on this task related to the data representation, the need for malware specific ML techniques, and a larger training set of malware samples labeled with behaviors.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.