DOI: 10.3390/computers12050091
Terbit pada 25 April 2023 Pada De Computis

Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions

Mohammad Mustafa Taye

Abstrak

In recent years, deep learning (DL) has been the most popular computational approach in the field of machine learning (ML), achieving exceptional results on a variety of complex cognitive tasks, matching or even surpassing human performance. Deep learning technology, which grew out of artificial neural networks (ANN), has become a big deal in computing because it can learn from data. The ability to learn enormous volumes of data is one of the benefits of deep learning. In the past few years, the field of deep learning has grown quickly, and it has been used successfully in a wide range of traditional fields. In numerous disciplines, including cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, deep learning has outperformed well-known machine learning approaches. In order to provide a more ideal starting point from which to create a comprehensive understanding of deep learning, also, this article aims to provide a more detailed overview of the most significant facets of deep learning, including the most current developments in the field. Moreover, this paper discusses the significance of deep learning and the various deep learning techniques and networks. Additionally, it provides an overview of real-world application areas where deep learning techniques can be utilised. We conclude by identifying possible characteristics for future generations of deep learning modelling and providing research suggestions. On the same hand, this article intends to provide a comprehensive overview of deep learning modelling that can serve as a resource for academics and industry people alike. Lastly, we provide additional issues and recommended solutions to assist researchers in comprehending the existing research gaps. Various approaches, deep learning architectures, strategies, and applications are discussed in this work.

Artikel Ilmiah Terkait

Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions

Iqbal H. Sarker

2 Agustus 2021

Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (AI) is nowadays considered as a core technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0). Due to its learning capabilities from data, DL technology originated from artificial neural network (ANN), has become a hot topic in the context of computing, and is widely applied in various application areas like healthcare, visual recognition, text analytics, cybersecurity, and many more. However, building an appropriate DL model is a challenging task, due to the dynamic nature and variations in real-world problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines that hamper development at the standard level. This article presents a structured and comprehensive view on DL techniques including a taxonomy considering various types of real-world tasks like supervised or unsupervised. In our taxonomy, we take into account deep networks for supervised or discriminative learning, unsupervised or generative learning as well as hybrid learning and relevant others. We also summarize real-world application areas where deep learning techniques can be used. Finally, we point out ten potential aspects for future generation DL modeling with research directions. Overall, this article aims to draw a big picture on DL modeling that can be used as a reference guide for both academia and industry professionals.

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

O. Al-Shamma Ayad Al-dujaili José I. Santamaría + 7 lainnya

31 Maret 2021

In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.

An Introductory Review of Deep Learning for Prediction Models With Big Data

M. Dehmer S. Tripathi Zhenyi Yang + 2 lainnya

28 Februari 2020

Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and machine learning. Recent breakthrough results in image analysis and speech recognition have generated a massive interest in this field because also applications in many other domains providing big data seem possible. On a downside, the mathematical and computational methodology underlying deep learning models is very challenging, especially for interdisciplinary scientists. For this reason, we present in this paper an introductory review of deep learning approaches including Deep Feedforward Neural Networks (D-FFNN), Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Autoencoders (AEs), and Long Short-Term Memory (LSTM) networks. These models form the major core architectures of deep learning models currently used and should belong in any data scientist's toolbox. Importantly, those core architectural building blocks can be composed flexibly—in an almost Lego-like manner—to build new application-specific network architectures. Hence, a basic understanding of these network architectures is important to be prepared for future developments in AI.

Deep learning modelling techniques: current progress, applications, advantages, and challenges

M. Mofijur Amir H. Gandomi Maruf Hassan + 6 lainnya

17 April 2023

Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can be applied across various sectors. Specifically, it possesses the ability to utilize two or more levels of non-linear feature transformation of the given data via representation learning in order to overcome limitations posed by large datasets. As a multidisciplinary field that is still in its nascent phase, articles that survey DL architectures encompassing the full scope of the field are rather limited. Thus, this paper comprehensively reviews the state-of-art DL modelling techniques and provides insights into their advantages and challenges. It was found that many of the models exhibit a highly domain-specific efficiency and could be trained by two or more methods. However, training DL models can be very time-consuming, expensive, and requires huge samples for better accuracy. Since DL is also susceptible to deception and misclassification and tends to get stuck on local minima, improved optimization of parameters is required to create more robust models. Regardless, DL has already been leading to groundbreaking results in the healthcare, education, security, commercial, industrial, as well as government sectors. Some models, like the convolutional neural network (CNN), generative adversarial networks (GAN), recurrent neural network (RNN), recursive neural networks, and autoencoders, are frequently used, while the potential of other models remains widely unexplored. Pertinently, hybrid conventional DL architectures have the capacity to overcome the challenges experienced by conventional models. Considering that capsule architectures may dominate future DL models, this work aimed to compile information for stakeholders involved in the development and use of DL models in the contemporary world.

Machine learning and deep learning

K. Heinrich Patrick Zschech Christian Janiesch

8 April 2021

Today, intelligent systems that offer artificial intelligence capabilities often rely on machine learning. Machine learning describes the capacity of systems to learn from problem-specific training data to automate the process of analytical model building and solve associated tasks. Deep learning is a machine learning concept based on artificial neural networks. For many applications, deep learning models outperform shallow machine learning models and traditional data analysis approaches. In this article, we summarize the fundamentals of machine learning and deep learning to generate a broader understanding of the methodical underpinning of current intelligent systems. In particular, we provide a conceptual distinction between relevant terms and concepts, explain the process of automated analytical model building through machine learning and deep learning, and discuss the challenges that arise when implementing such intelligent systems in the field of electronic markets and networked business. These naturally go beyond technological aspects and highlight issues in human-machine interaction and artificial intelligence servitization.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.