Recognizing Bot Activity in Collaborative Software Development
Abstrak
Using popular open source projects on GitHub, we provide evidence that bots are regularly among the most active contributors, even though GitHub does not explicitly acknowledge their presence. This poses a problem for techniques that analyze human contributor activity.
Artikel Ilmiah Terkait
Alexandre Decan T. Mens Pooya Rostami Mazrae + 1 lainnya
1 Oktober 2022
GitHub Actions was introduced in 2019 and constitutes an integrated alternative to CI/CD services for GitHub repositories. The deep integration with GitHub allows repositories to easily automate software development workflows. This paper empirically studies the use of GitHub Actions on a dataset comprising 68K repositories on GitHub, of which 43.9% are using GitHub Actions workflows. We analyse which workflows are automated and identify the most frequent automation practices. We show that reuse of actions is a common practice, even if this reuse is concentrated in a limited number of actions. We study which actions are most frequently used and how workflows refer to them. Furthermore, we discuss the related security and versioning aspects. As such, we provide an overview of the use of GitHub Actions, constituting a necessary first step towards a better understanding of this emerging ecosystem and its implications on collaborative software development in the GitHub social coding platform.
Thomas Zimmermann Danielle Gonzalez Nachiappan Nagappan
1 Mei 2020
In the last few years, artificial intelligence (AI) and machine learning (ML) have become ubiquitous terms. These powerful techniques have escaped obscurity in academic communities with the recent onslaught of AI & ML tools, frameworks, and libraries that make these techniques accessible to a wider audience of developers. As a result, applying AI & ML to solve existing and emergent problems is an increasingly popular practice. However, little is known about this domain from the software engineering perspective. Many AI & ML tools and applications are open source, hosted on platforms such as GitHub that provide rich tools for large-scale distributed software development. Despite widespread use and popularity, these repositories have never been examined as a community to identify unique properties, development patterns, and trends. In this paper, we conducted a large-scale empirical study of AI & ML Tool (700) and Application (4,524) repositories hosted on GitHub to develop such a characterization. While not the only platform hosting AI & ML development, GitHub facilitates collecting a rich data set for each repository with high traceability between issues, commits, pull requests and users. To compare the AI & ML community to the wider population of repositories, we also analyzed a set of 4,101 unrelated repositories. We enhance this characterization with an elaborate study of developer workflow that measures collaboration and autonomy within a repository. We've captured key insights of this community's 10 year history such as it's primary language (Python) and most popular repositories (Tensorflow, Tesseract). Our findings show the AI & ML community has unique characteristics that should be accounted for in future research.
S. Santhanam Tobias Hecking A. Schreiber + 1 lainnya
9 Februari 2022
Bots have emerged from research prototypes to deployable systems due to the recent developments in machine learning, natural language processing and understanding techniques. In software engineering, bots range from simple automated scripts to decision-making autonomous systems. The spectrum of applications of bots in software engineering is so wide and diverse, that a comprehensive overview and categorization of such bots is needed. Existing works considered selective bots to be analyzed and failed to provide the overall picture. Hence it is significant to categorize bots in software engineering through analyzing why, what and how the bots are applied in software engineering. We approach the problem with a systematic mapping study based on the research articles published in this topic. This study focuses on classification of bots used in software engineering, the various dimensions of the characteristics, the more frequently researched area, potential research spaces to be explored and the perception of bots in the developer community. This study aims to provide an introduction and a broad overview of bots used in software engineering. Discussions of the feedback and results from several studies provide interesting insights and prospective future directions.
P. Sharma N. Stanger B. Savarimuthu
10 Februari 2021
A sound Decision-Making (DM) process is key to the successful governance of software projects. In many Open Source Software Development (OSSD) communities, DM processes lie buried amongst vast amounts of publicly available data. Hidden within this data lie the rationale for decisions that led to the evolution and maintenance of software products. While there have been some efforts to extract DM processes from publicly available data, the rationale behind 'how' the decisions are made have seldom been explored. Extracting the rationale for these decisions can facilitate transparency (by making them known), and also promote accountability on the part of decision-makers. This work bridges this gap by means of a large-scale study that unearths the rationale behind decisions from Python development email archives comprising about 1.5 million emails. This paper makes two main contributions. First, it makes a knowledge contribution by unearthing and presenting the rationale behind decisions made. Second, it makes a methodological contribution by presenting a heuristics-based rationale extraction system called Rationale Miner that employs multiple heuristics, and follows a data-driven, bottom-up approach to infer the rationale behind specific decisions (e.g., whether a new module is implemented based on core developer consensus or benevolent dictator's pronouncement). Our approach can be applied to extract rationale in other OSSD communities that have similar governance structures.
Keerthana Muthu Subash L. P. Kumar Preetha Chatterjee + 2 lainnya
1 Mei 2022
Today, software developers work on complex and fast-moving projects that often require instant assistance from other domain and subject matter experts. Chat servers such as Discord facilitate live communication and collaboration among developers all over the world. With numerous topics discussed in parallel, mining and analyzing the chat data of these platforms would offer researchers and tool makers opportunities to develop software tools and services such as automated virtual assistants, chat bots, chat summarization techniques, Q&A thesaurus, and more. In this paper, we propose a dataset called DISCO consisting of the one-year public DIScord chat COnversations of four software development communities. We have collected the chat data of the channels containing general programming Q&A discussions from the four Discord servers, applied a disentanglement technique [13] to extract conversations from the chat transcripts, and performed a manual validation of conversations on a random sample (500 conversations). Our dataset consists of 28, 712 conversations, 1,508,093 messages posted by 323, 562 users. As a case study on the dataset, we applied a topic modelling technique for extracting the top five general topics that are most discussed in each Discord channel.
Daftar Referensi
0 referensiTidak ada referensi ditemukan.
Artikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.